
Reinforcement Learning for

Rule Selection in

End to End Differentiable Proving

Candidate Number: 1047946

University of Oxford

A thesis submitted for the degree of

Master of Science in Computer Science

Trinity Term 2021

Abstract

Neural Theorem Provers (NTPs) are neuro-symbolic models that com-

bine deep learning with a system of logic. They can learn representations

for data, induce rules, are naturally interpretable, come with built-in ex-

planations for conclusions, and demonstrate the capacity for systematic

generalization. However, since they consider all possible rules for proving a

goal, they suffer from high computational complexity, and are thus unsuit-

able for use on large or complex datasets. Conditional Theorem Provers

(CTPs) are proposed as an extension to address this issue. Nonetheless,

CTPs suffer from similar computational constraints, as they still consider

multiple proof paths while reasoning. We propose RL-CTPs, where CTPs

are augmented with reinforcement learning to select the proof paths most

likely to succeed. This allows the model designer to specify the number

of proof paths to consider, to conform to the computational constraints

of their use case, while retaining all of the benefits of CTPs. Using the

CLUTRR dataset to perform evaluations, we provide evidence for the

computational issues in existing CTP models, show that RL-CTPs allevi-

ate these issues, and demonstrate that, in certain scenarios, the accuracy

achieved by RL-CTPs is higher than CTPs with equivalent computational

complexity.

Contents

1 Introduction 1

1.1 Knowledge Bases and Reasoning . 1

1.2 Neuro-symbolic Reasoning . 2

1.3 Objectives . 3

1.4 Thesis Structure . 4

2 Background 5

2.1 Prolog . 5

2.2 Datasets . 7

2.2.1 Datasets from Related Work 7

2.2.2 CLUTRR . 7

2.2.3 Specific CLUTRR Instances 8

2.3 Backward Chaining Algorithm . 9

2.4 Neural Theorem Provers . 11

2.4.1 Unification . 13

2.4.2 Expansion . 14

2.4.3 Inductive Logic Programming 14

2.4.4 Learning . 16

2.5 Conditional Theorem Provers . 16

2.5.1 Issues with NTPs . 16

2.5.2 Conditional Rule Selection . 17

2.5.3 Selection Module . 17

2.5.4 Reformulator Architectures 18

2.5.5 Summary . 19

2.6 Related Work . 20

2.6.1 Systematic Generalization . 21

2.6.2 Knowledge Graph Embedding 21

2.6.3 Inductive Logic Programming 22

i

2.6.4 Neuro-symbolic Models . 22

3 Explanation of the Problem 23

3.1 Number of Reformulators Needed . 23

3.1.1 Expressivity of CTPs . 23

3.1.2 Experimental Results . 25

3.2 Reasoning Depth . 27

3.2.1 Required Reasoning Depths 27

3.2.2 Example . 28

3.2.3 Experimental Results . 29

3.3 Computational Issues . 32

3.3.1 Time Complexity Analysis . 32

3.3.2 Wall-Clock Time . 33

3.3.3 Outline of Solution . 35

4 Method 36

4.1 Optimising Proof Paths . 36

4.1.1 Motivation for the Existence of a Solution 36

4.1.2 Choosing Reformulators . 38

4.1.3 Wall-Clock Time Speedup . 38

4.2 REINFORCE . 39

4.2.1 Reinforcement Learning . 39

4.2.2 Policy Gradient Descent . 40

4.2.3 Implementation . 41

4.2.4 Issues Encountered with the Architecture 43

4.3 Experiment Design . 45

4.3.1 Model Hyperparameters . 45

4.3.2 Training Procedure . 45

4.3.3 Outperforming the Baseline 47

5 Initial Attempts 50

5.1 Recursive Method . 50

5.1.1 Core Implementation Issue with the Architecture 50

5.1.2 Naive Solution . 51

5.2 Iterative Method . 52

5.2.1 Mismatching Batch Sizes . 52

5.2.2 Outline of Solution . 53

ii

5.2.3 Speed . 53

5.3 Reformulator Subsets . 55

5.3.1 Relative Strengths of Reformulator Subsets 55

5.3.2 Average Reformulator Strength 55

5.3.3 Maximizing Subset Performance 57

5.4 First Batch Element Approximation 59

5.4.1 Outline of Solution . 59

5.4.2 Speedup . 60

5.4.3 Results . 60

6 Tensor Operations Solution 65

6.1 Technicalities of Solution . 65

6.1.1 Points of Integration . 66

6.1.2 Selection Module . 67

6.1.3 Tensor Masking . 69

6.1.4 Collecting Rewards . 70

6.2 Model Optimization . 72

6.3 Results . 73

6.3.1 Speedup . 73

6.3.2 Comparison to Baseline . 74

6.3.3 Statistical Significance . 77

6.4 Further Improvements . 78

6.4.1 Negative Examples . 79

6.4.2 Variables . 79

6.4.3 Entropy Regularization . 80

6.4.4 REINFORCE with Baseline 80

6.4.5 Training Modules in Parallel 80

6.4.6 Conditioning Upon More . 81

7 Conclusion 82

A Model Hyperparameters 84

A.1 Fixed CTP Hyperparameters . 84

A.2 Number of Reformulators . 85

A.3 Reasoning Depth . 85

A.4 First Batch Element Approximation 85

A.5 Reformulators Subsets . 86

iii

A.6 RL with Tensor Operations . 86

A.6.1 5 Reformulators . 86

A.6.2 8 Reformulators . 86

Bibliography 87

iv

List of Figures

2.1 Example task from CLUTRR dataset 1.3 test 9

2.2 Graph representing the task from figure 2.1 10

3.1 CTP average and maximum test accuracy on datasets 1.4 test and

1.10 test for a varying number of reformulators 26

3.2 Graph representing the provided facts from an instance of the dataset

1.10 test . 28

3.3 Graph representing the dependency of reasoning steps in Figure 3.2 . 30

3.4 CTP maximum test accuracy on datasets 1.4 test and 1.10 test for a

varying test reasoning depth . 31

3.5 CTP average test accuracy and standard deviation on datasets 1.4 test

and 1.10 test for a varying test reasoning depth 32

3.6 CTP average evaluation time across all datasets for a varying number

of reformulators . 34

3.7 CTP average evaluation time across all datasets for a varying test

reasoning depth, using a logarithmic scale 34

4.1 CTP Hyperparameters . 46

5.1 CTP maximum and minimum accuracy on 1.4 test when 5 or 8 refor-

mulators are trained, evaluating using 4 random subsets of 3 reformu-

lators each. Results shown across 10 seeds 56

5.2 CTP accuracy across all datasets, using 5 and 8 reformulators during

training, evaluating using 4 random subsets of 3 reformulators each . 57

5.3 Comparison across all datasets of accuracy achieved using SubsetMax

with 5 reformulators, SubsetMax with 8 reformulators, and CTPs with

3 reformulators. Hyperparameters tuned on 1.3 test and 1.9 test . . . 58

5.4 Comparison across all datasets of evaluation time when using CTPs

with 3 reformulators, CTPs with 8 reformulators, and the FirstBatch

method with 8 choosing 3 reformulators 61

v

5.5 Comparison across all datasets of accuracy achieved using random sub-

sets of size 3 of 8 reformulators, the FirstBatch method with 8 choos-

ing 3 reformulators, and CTPs with 3 reformulators. Hyperparameters

tuned on 1.3 test and 1.9 test . 62

5.6 Comparison across all datasets of accuracy achieved using the First-

Batch method with 8 choosing 2 reformulators, and CTPs with 2 re-

formulators. Hyperparameters tuned on 1.3 test and 1.9 test 63

6.1 Comparison across all datasets of evaluation time when using CTPs

with 3 reformulators, CTPs with 8 reformulators, and the TensorOp

method with 8 choosing 3 reformulators 73

6.2 Comparison across all datasets of accuracy achieved using TensorOp

with 8 choosing 2 reformulators, TensorOp with 5 choosing 2 refor-

mulators, and CTPs with 2 reformulators. Hyperparameters tuned on

1.3 test and 1.9 test . 75

6.3 Comparison across all datasets of accuracy achieved using TensorOp

with 8 choosing 3 reformulators, TensorOp with 5 choosing 3 refor-

mulators, and CTPs with 3 reformulators. Hyperparameters tuned on

1.3 test and 1.9 test . 76

6.4 One-tailed unpaired t-test between the baseline of CTPs with 3 refor-

mulators and RL-CTPs implemented by TensorOp with 5 choosing 3

reformulators. Hyperparameters tuned on 1.3 test 78

vi

List of Algorithms

1 Backward chaining . 12

2 Neural backward chaining . 15

3 Conditional theorem proving: inclusion of selection module 18

4 REINFORCE . 41

5 Model training procedure . 49

6 Conditional theorem proving: batch expansion 51

7 Recursive RL-CTPs . 52

8 Iterative RL-CTPs . 54

9 FirstBatch RL-CTPs . 60

10 RL-CTP selection module . 68

11 TensorOp RL-CTPs . 71

vii

Chapter 1

Introduction

1.1 Knowledge Bases and Reasoning

Recent efforts in automated knowledge base (KB) completion use neural link pre-

diction models to learn representations of symbols in a vector space, also referred

to as subsymbolic representations (Nickel et al., 2012; Riedel et al., 2013; Socher

et al., 2013; Chang et al., 2014; Yang et al., 2015; Toutanova et al., 2015; Trouillon

et al., 2016). These representations allow models to infer new knowledge by en-

coding similarities. For example, if the subsymbolic representation of the predicate

grandfatherOf is similar to that of grandpaOf, they likely express a similar relation

and will hold for the same sets of constants. Likewise, if constants Alice and Bob

have similar representations, then similar relations likely hold for both; for example,

livesInLondon(Alice) and livesInLondon(Bob). This is useful, as many state-of-

the-art knowledge bases have missing entries, which can be predicted using the learnt

representations. For example, over 70% of people included in Freebase have no known

place of birth (West et al., 2014).

While this is effective for automatically completing KBs, it is often more important

to infer more complicated rules that hold in the data; for example, that the father of

the father of X is the grandfather of X. However, this kind of reasoning is difficult for

neural link prediction models to capture, as they only learn to score facts in isolation.

In contrast, formal symbolic theorem provers like Prolog (Gallaire & Minker, 1978)

are designed specifically to do this kind of multi-hop reasoning. However, symbolic

provers do not learn subsymbolic representations, which means that they are unable

to do link prediction and will often fail in situations where similar but not identical

symbols are used (e.g. grandpaOf and grandfatherOf).

Promising work has been done around integrating neural models and symbolic

reasoning, as their complementary strengths and weaknesses make for powerful models

1

when combined (Garcez et al., 2015; Yang et al., 2017; Evans & Grefenstette, 2018;

Sadeghian et al., 2019; Minervini et al., 2020a). In this thesis, we consider such a

technique: Neural Theorem Provers (Rocktäschel & Riedel, 2017).

1.2 Neuro-symbolic Reasoning

The approach of Rocktäschel & Riedel (2017) is to keep variable binding symbolic,

but compare predicates and constants using their subsymbolic representations. They

introduce Neural Theorem Provers (NTPs): end-to-end differentiable provers for the-

orems formulated as queries to a KB. Prolog’s backward chaining algorithm (Gallaire

& Minker, 1978) is used as a blueprint for constructing neural networks in a recursive

manner, which can prove queries to a KB using vector representations of symbols.

These proofs are given success scores, which are differentiable with respect to the

subsymbolic representations, allowing the model to learn representations that maxi-

mize the proof scores. Using the same process, rules of predefined structures are also

learnt.

NTPs have many advantages. Primarily, they learn representations of symbols

in a KB like neural link prediction models, but also learn rules which hold in the

KB. It is trivial to incorporate already known rules into the reasoning of NTPs, as

one simply needs to include them in the knowledge base. NTPs are also naturally

interpretable, since they induce subsymbolic rules that can be decoded to human-

readable symbolic rules. This makes them preferable to black box natural language

models such as BERT (Devlin et al., 2019), which cannot give explanations for their

answers. Finally, Minervini et al. (2020b) demonstrate that NTPs have the ability to

perform systematic generalization, learning how to evaluate using complex reasoning

patterns while only being trained on simple examples. In contrast, many natural

language understanding systems, where a deep neural network is used for question

answering and inference, appear not to generalize robustly (Johnson et al., 2017;

Bahdanau et al., 2019; Lake & Baroni, 2018; Sinha et al., 2019).

However, NTPs suffer from significant computational issues, as they consider all

possible rules for proving a goal or sub-goal. This means they cannot be applied in

situations that require a large number of rules or reasoning steps. Minervini et al.

(2020b) introduce Conditional Theorem Provers (CTPs) as a solution to this: an

extension of NTPs that learns to select subsets of rules to consider at each expansion

step of the reasoning algorithm. CTPs do this by including a module that learns how

to take a goal and return only the rules that could be used to prove it. It consists

2

of multiple neural networks, referred to as reformulators, each of which can represent

multiple rules in a knowledge base. This new module is end-to-end differentiable in

the same way that NTPs are and thus can be trained jointly with the other processes

in NTPs.

Despite being introduced as a solution to the problem, CTPs can end up suffer-

ing from computational issues in a similar fashion to NTPs, since they still need to

consider multiple proof paths when reasoning. For complex datasets in which there

are many ways to prove a given goal, more proof paths need to be checked. This, in

conjunction with the high reasoning depth often required for such datasets, causes

CTPs to become infeasibly slow. This is particularly problematic when a CTP model

applied in a scenario where the evaluation time is important, such as answering a

question posed by a user who needs a prompt solution. Even outside of this, the com-

putational time complexity of CTPs is high enough that one could envision datasets

on which they will take too long to evaluate for any use case.

1.3 Objectives

In this thesis, we aim to address the computational issues that CTPs suffer from

by extending them to RL-CTPs. In this new model, CTPs are augmented with

reinforcement learning, where an agent is trained to select the proof paths that are

most likely to succeed. In this way, the number of proof paths considered during

evaluation can be scaled down, at the discretion of the model designer. This allows

the designer of the model to bring down the evaluation time to suit the use case and

enables CTPs to evaluate on datasets that they otherwise would not be able to, due

to their computational time complexity.

An alternative to addressing the computational issues with a CTP model is to

simply reduce the number of reformulators trained, leading to fewer proof paths

being considered. However, this makes the model less expressive, meaning it will

likely be unable to capture all of the rules in a knowledge base. Thus, for RL-CTPs

to be useful, an RL-CTP model expanding only k proof paths should achieve higher

accuracy than a CTP model with only k reformulators.

With that in mind, the objectives of this thesis are as follows:

1. Motivate for CTP models sometimes requiring a large number of reformulators

and reasoning depth.

3

2. Concretely establish the computational issues that CTPs suffer from, using both

empirical results and a theoretical analysis.

3. Define a framework for RL-CTPs using policy gradient descent.

4. Develop and discuss various implementations of RL-CTPs.

5. Demonstrate that RL-CTPs are an improvement upon CTPs by running ex-

periments, displaying and analyzing the results. We aim to test both their

respective accuracies and evaluation times.

1.4 Thesis Structure

This thesis consists of 7 chapters. Subsequent to this introductory chapter, Chapter 2

provides all the background knowledge needed to understand CTPs, as well as placing

them in their context by reviewing related work. Chapter 3 motivates for using more

reformulators and higher reasoning depths in CTP models and analyzes in detail the

computational issues that CTPs suffer from as a result. In Chapter 4, we introduce

our framework for RL-CTPs and discuss the design of our experiments.

Chapters 5 and 6 report on the main body of implementation work that we per-

formed, as well as showing and analyzing the results for each of the methods we

attempted. In Chapter 5, we discuss the methods that failed to yield satisfactory re-

sults, as well as giving some insights into the inner workings of CTPs. In Chapter 6,

we give a detailed explanation of our successful implementation, analyze the results,

and discuss further improvements that could be made to the model. We conclude

the thesis in Chapter 7 by summarizing the project outcomes, impact, and poten-

tial directions of future work. Appendices are also included, specifying the model

hyperparameters used for evaluations.

4

Chapter 2

Background

In this chapter, we introduce all of the background knowledge needed for the purposes

of this thesis. We start by formally defining Prolog (Gallaire & Minker, 1978), a logic

programming language. Next, we introduce the main dataset of concern in this work,

CLUTRR (Sinha et al., 2019), so that all future examples and discussions may be

grounded in this dataset. The backward chaining algorithm is then introduced, before

following on to the continuous relaxation of it into the technique of Neural Theorem

Provers (Rocktäschel & Riedel, 2017). Finally, Conditional Theorem Provers (Min-

ervini et al., 2020b) are introduced, as the technique upon which this work is based.

We conclude the chapter by reviewing related work that uses similar techniques, so

that this thesis may be understood in its context.

2.1 Prolog

Prolog (Gallaire & Minker, 1978) is a logic programming language that finds use in

contemporary work, such as by Seipel et al. (2018); Calegari et al. (2020). Moreover,

its core syntax and semantics are also found in other logic languages, such as Datalog

(Ceri et al., 1989). It has been used for a variety of tasks, including automated

theorem proving (Stickel, 1988), expert systems (Merritt, 2012), and natural language

processing (Lally & Fodor, 2011). A Prolog knowledge base (KB) consists of rules

and facts. Queries are passed to the KB, with Prolog returning whether or not the

queries are entailed (proven to be true) by the KB.

For ease of reading and consistency, we formally define the syntax and semantics

of Prolog to be used for the remainder of this thesis. An atom consists of a predicate

and a list of terms. Each term in an atom can be a variable, denoted by a capital

letter such as X, or a constant, denoted by a capitalized word such as Isaac. We

5

denote predicates with lowercase words such as fatherOf. So for example, the atom

fatherOf(Isaac, Jacob)

states that Isaac is the father of Jacob. One can also construct terms with variables,

such as fatherOf(X, Jacob).

A Prolog rule has the form H ← B, where the body B is a conjunction of zero

or more atoms and the head H is an atom. The variables in any rule are universally

quantified. If a rule has no variables, it is said to be grounded. A grounded rule with

an empty body constitutes a fact and is simply written out as the singular head atom.

By example:

• fatherOf(Isaac, Jacob) is a fact.

• parentOf(Isaac, Jacob)← sonOf(Jacob, Isaac) is a ground rule.

• grandfatherOf(X,Z) ← fatherOf(X, Y) ∧ fatherOf(Y, Z) is a rule stating

that for all X, Y, Z, if X is the father of Y and Y the father of Z, then X is the

grandfather of Z.

A substitution set ψ = {X1/t1, ..., XN/tN} defines a replacement of each variable

Xi by a term ti. Applying a substitution ψ to an atom or rule replaces all occurrences

of variables Xi by their corresponding terms ti.

So, given a knowledge base consisting of the rule

grandfatherOf(X,Z)← fatherOf(X, Y) ∧ fatherOf(Y, Z)

and the facts {fatherOf(Isaac, Jacob), fatherOf(Jacob, Joseph)}, we can apply

the substitution set {X/Isaac, Y/Jacob, Z/Joseph} to the rule to get that

grandfatherOf(Isaac, Joseph)← fatherOf(Isaac, Jacob)

∧ fatherOf(Jacob, Joseph)

and thus conclude that grandfatherOf(Isaac, Joseph) is true, since both atoms

in the body of the ground rule appear as facts in the KB.

6

2.2 Datasets

2.2.1 Datasets from Related Work

In the original paper proposing Neural Theorem Provers, Rocktäschel & Riedel (2017)

use the datasets of Countries (Bouchard et al., 2015), Kinship, Nations, and

UMLS (Kemp et al., 2006) to evaluate their model in terms of its performance on

neural link prediction tasks. Countries contains facts about regions, countries, and

sub-regions, and is designed to test the ability of the model to learn the hierarchical

structure of the regions, with respect to which of them are located within others. Na-

tions specifies properties of nation states, Kinship contains specific kinship relations,

and UMLS captures biomedical concepts, including treatments and diagnoses.

The wide array of datasets used demonstrates the applicability of this technique

to many different fields, with both Neural Theorem Provers and Conditional Theorem

Provers outperforming state-of-the-art neural link prediction models in most of these

datasets. In the paper proposing Conditional Theorem Provers, Minervini et al.

(2020b) introduce another dataset for evaluation, CLUTRR, which is the dataset we

use for evaluation in this thesis.

2.2.2 CLUTRR

CLUTRR - Compositional Language Understanding and Text-based Relational Rea-

soning (Sinha et al., 2019) - is a system for constructing artificial datasets modelling

family relationships. It contains a large number of parameters for controlling genera-

tion, including the number of examples to generate, the complexity of the examples,

and the number of facts in each example. The complexity ranges from basic family

relationships that are free from noise, up to family relationships with disconnected

and irrelevant facts.

Given a set of family relations, the task is to infer the relationship between two

family members whose relationship is not explicit in the set. To solve this, an agent

ought to be able to induce the logical rules that govern family relationships, and use

those rules to infer the relationship of the query members from the given relations.

In particular, CLUTRR allows for testing an agent’s ability to perform systematic

generalization.

Systematic generalization is defined as the capacity to understand and produce a

potentially infinite number of novel combinations from known components (Chomsky,

1957). In the case of CLUTRR, this means testing on knowledge bases that require

combinations of rule applications that were not provided during training, as well

7

as testing on datasets that require a higher number of reasoning steps than during

training (Sinha et al., 2019; Gontier et al., 2020). If the model has the ability to

perform systematic generalization, then it should be able to apply learnt rules in

new combinations to solve the problem, as well as reasoning on larger and more

complex examples than seen before. This is evaluated by training the model to

infer relationships while traversing only a small number of family relations, and then

evaluating on a dataset where it has to traverse a larger number.

2.2.3 Specific CLUTRR Instances

Sinha et al. (2019) published several generated dataset groups alongside the CLUTRR

system. Minervini et al. (2020b) make use of two of them, under the original iden-

tifiers 089907f8 and db9b8f04, which they refer to as CLUTRRG(k = 2, 3) and

CLUTRRG(k = 2, 3, 4) respectively. The test and train sets of both are generated

as “clean” stories, designed to test generalization. CLUTRRG(k = 2, 3, 4) contains a

training dataset with training clauses of length k = 2, 3, 4 and nine testing datasets,

each with a different testing clause length k = 2, 3, ..., 10. This is the dataset group

used for training and evaluation in our thesis. We refer to the training dataset as

1.2,1.3,1.4 train and the testing datasets as 1.2 test, 1.3 test, ..., 1.10 test.

It is also important to note that Minervini et al. (2020b) do some pre-processing

on the datasets to turn all gendered predicates into their corresponding “ungen-

dered” versions. For example, the fact brother(Benjamin, Joseph) is converted to

sibling(Benjamin, Joseph). In this thesis, we make use of the unedited version of

CLUTRRG(k = 2, 3, 4), as it is more complex than the ungendered version and di-

rectly corresponds to the dataset published by Sinha et al. (2019). This means that

instead of learning rules such as

grand(X,Z)← SO(Y, Z) ∧ grand(X, Y)

as demonstrated by Minervini et al. (2020b), we learn rules such as

grandmother(X,Z)← wife(Y, Z) ∧ grandfather(X, Y)

The set of all gendered predicates that can appear in CLUTRR is: P = { aunt,

brother, brother-in-law, daughter, daughter-in-law, father, father-in-law,

granddaughter, grandfather, grandmother, grandson, husband, mother, mother-

in-law, nephew, niece, sister, sister-in-law, son, son-in-law, uncle, wife }.

8

Story [Joshua] got his son, [Don], a car for his birthday. [Don] loves
talking to his grandfather [James] on the phone. [James]
took his daughter, [Cindy], to a baseball game.

Query (‘Joshua’, ‘Cindy’)

Target sister

Proof State [(‘Joshua’, ‘sister’, ‘Cindy’): [(‘Joshua’, ‘father’, ‘James’),
(‘James’, ‘daughter’, ‘Cindy’)], (‘Joshua’, ‘father’, ‘James’):
[(‘Joshua’, ‘son’, ‘Don’), (‘Don’, ‘grandfather’, ‘James’)]]

Story Edges [(0, 1), (1, 2), (2, 3)]

Edge Types [‘son’, ‘grandfather’, ‘daughter’]

Query Edge (0, 3)

Figure 2.1: Example task from CLUTRR dataset 1.3 test

Every task within a CLUTRRG(k = 2, 3, 4) dataset contains a story in textual

form, a query specifying two individuals to infer the relationship between, the answer

to the query, a “proof state” that demonstrates how the answer to the query could

be proved, instructions for how to formally represent the story as a knowledge graph,

and other less relevant info such as the gender of each individual. An extract from

1.3 test can be seen in Figure 2.1, and the knowledge graph it represents in Figure

2.2.

2.3 Backward Chaining Algorithm

The restrictive syntax of Prolog, especially when compared to other logics such

as first-order logic (Smullyan, 1995), allows one to answer queries using Prolog’s

backward chaining algorithm (Gallaire & Minker, 1978). Given a goal, such as

sister(Joshua, Cindy), which is constructed from a query, Prolog tries to find substi-

tutions for the goal by using the rules in the knowledge base. The process of checking

if the head of a rule matches a goal is called unification. If unification succeeds, then

the goal is replaced with the atoms from the body of the rule, giving a new set of

sub-goals. The same process is then applied to each of these sub-goals, continuing

recursively. If at any point, the set of sub-goals all exist as facts in the knowledge

base, then the algorithm confirms that the query is true. If there are no more rules to

apply, taking care to detect and cease applying cycles of rules, the algorithm states

that the query cannot be proven from the knowledge base.

9

0

Joshua

1

Don

2

James

3

Cindy

son

grandfather

daughter

An arrow represents a possessive relationship. For example, the arrow from Joshua

to Don shows that Joshua has a son called Don. The green nodes represent the
query entities.

Figure 2.2: Graph representing the task from figure 2.1

Using the example from Figure 2.2, consider the following goal to be proven:

sister(Joshua, Cindy). We make the example semantically consistent by assum-

ing that the atom grandfather(X,Z) means that X has a paternal grandfather Z.

This is necessary, since CLUTRR makes simplifying assumptions about family rela-

tionships in the datasets it generates. Assume that the rules in the knowledge base

are:

(1) father(Y, Z)← son(Y,X) ∧ grandfather(X,Z)

(2) sister(X, Y)← father(X,Z) ∧ daughter(Z, Y)

This gives an initial set of sub-goals: {sister(Joshua, Cindy)}. Prolog then

tries to unify this sub-goal with the rules in the knowledge base. Unification with

rule (1) fails, since sister(Joshua, Cindy) does not unify with the head of the rule

father(X, Y) due to mismatching predicates. Unification with sister(X, Y) suc-

ceeds under the substitution set {X/Joshua, Y/Cindy}, so the set of sub-goals is

updated using rule (2) to {father(Joshua, Z), daughter(Z, Cindy)}.
Now consider the sub-goal father(Joshua, Z), which unifies with the head of

rule (1) under the substitution set {Y/Joshua, Z/A} (substituting Z as it has al-

ready been used). This gives two new sub-goals, updating our set of sub-goals to

{daughter(Z, Cindy), son(Joshua, X), grandfather(X,A)}. But under the substi-

tution set {Z/James, A/James, X/Don}, the ground atoms

10

{daughter(James, Cindy), son(Joshua, Don), grandfather(Don, James)}

all appear as facts in the knowledge base. Thus, the algorithm confirms that the

goal sister(Joshua, Cindy) is true, giving an answer of ‘sister’ to the query (‘Joshua’,

‘Cindy’).

Note that the algorithm will often branch out into multiple potential proofs, since

there can be several rules whose heads unify with a sub-goal. For example, to prove

the goal sister(Joshua, Cindy), one could use either of the following rules to derive

sub-goals:

sister(X, Y)← father(X,Z) ∧ daughter(Z, Y)

sister(X, Y)← sister(X,Z) ∧ sister(Z, Y)

In Algorithm 1, based on the pseudocode provided by Rocktäschel & Riedel (2017),

we define a recursive algorithm for performing backward chaining. The or function

considers all the possible rules whose heads can be unified with a given goal, as any of

them would suffice for a proof. The and function captures having to prove every atom

in the body of a rule to prove the head true. As this method expands out backwards

from the goal, considering all possible proof paths, it will find a valid proof if one

does exist.

However, Prolog, and thus the backward chaining algorithm, do suffer from certain

limitations. In particular, they are unable to learn subsymbolic representations for

symbols in a knowledge base, and thus cannot generalize to queries containing sim-

ilar predicates or constants that are represented by different symbols (for example,

grandpa and grandfather). This is because even though the predicates represent

the same concept, they are symbolically different, meaning that unification between

them will fail.

2.4 Neural Theorem Provers

Neural Theorem Provers (NTPs), proposed by Rocktäschel & Riedel (2017), are a

continuous relaxation of the backward chaining algorithm. They allow one to calculate

the gradient of proof successes with respect to vector representations of symbols, and

are defined in terms of modules, drawing inspiration from dynamic neural module

11

Algorithm 1: Backward chaining

In the code, K is the knowledge base containing the rules and facts, sets are
denoted with curly brackets, lists are denoted with square brackets, an

underscore matches any argument, G refers to a goal, Ĝ to a set of
sub-goals, S to a substitution set, B to the body of a rule, and H to the

head of a rule. To check if a goal G1 holds true, one needs to get the output
of or(G1, []). If the output contains a substitution set, then the query is

true, otherwise it will only contain the value FAIL and the query cannot be
proven.

1. or(G,S) = {S ′ | S ′ ∈ and(B, unify(H,G, S)) for each H ← B ∈ K}

2. and(, FAIL) = FAIL

3. and([], S) = S

4. and(G : Ĝ, S) = {S ′′ | S ′′ ∈ and(Ĝ, S ′′) ∀S ′ ∈ or(substitute(G,S), S)}

5. unify(, , FAIL) = FAIL

6. unify([], [], S) = S

7. unify([], ,) = FAIL

8. unify(, [],) = FAIL

9.

unify(h : H, g : G,S) = unify(H,G


S ∪ {h/g} if h ∈ V
S ∪ {g/h} if g ∈ V, h 6∈ V

S if g = h
FAIL otherwise

)

10. substitute([],) = []

11.

substitute(g : G,S) =

{
x if g/x ∈ S
g otherwise

}

12

networks (Andreas et al., 2016). These modules are based upon the functions from

the recursive definition of the backward chaining algorithm in Algorithm 1.

The recursive expansion upon the goal is kept track of in proof states, which each

contain a neural network that outputs the success score of the proof so far, and the

substitution set. The neural network is recursively built upon, with new nodes being

added as rules are applied. Every different proof path will have a different proof

state associated with it. The modules and training procedures are described in detail

below.

2.4.1 Unification

The conventional backward chaining algorithm does unification symbolically; for ex-

ample, checking if the symbol sister in a goal sister(Joshua, Cindy) matches the

symbol sister in a rule sister(X, Y) ← father(X,Z) ∧ daughter(Z, Y). NTPs

replace this by instead having a dense vector representation for each predicate and

constant in the knowledge base. So the predicates sister, father and the constants

Joshua, Cindy would become their representations θsister, θfather, θJoshua, θCindy ∈ Rk.

These representations are randomized initially and trained over time.

Using these representations, NTPs compare symbols for unification using a soft

matching between their vector representations. Any differentiable similarity measure

K : Rk × Rk → [0, 1], such as a Gaussian kernel, can be used for this purpose.

Rocktäschel & Riedel (2017) choose to utilize a Radial Basis Function (RBF) kernel

(Broomhead & Lowe, 1988), with µ = 1√
2
. This means that rules can be applied even

when the symbols in the goal and the head are not exactly the same, but are similar

in meaning (for example, grandpa and grandfather).

To unify two atoms, the unify module iterates through the list of terms of each

atom, with unification failing if the predicates have different arities (number of ar-

guments). If one of the symbols is a variable, a substitution is added to the current

substitution set, with pairs of constants being assigned a similarity score using the

described RBF kernel. This means that unification can only fail when there are mis-

matching arities in the predicates, as even vastly different constants will simply mean

a very low similarity score. If unification does fail, then the neural network expansion

is cancelled for this particular proof branch.

13

2.4.2 Expansion

The or module attempts to apply rules in the KB to a goal. The module simply unifies

the goal with the head of every rule in the KB, and then instantiates an and module

to prove the sub-goals of every rule for which unification succeeded. The similarity

score from unification gives an upper bound on the scores of the proofs expanded

further from this point, capturing the notion that a proof is only as accurate as the

least accurate expansion performed in it.

The and module tries to prove every sub-goal by instantiating an or module

for each of them, but stops expanding if the pre-defined reasoning depth limit has

already been reached. The overall success score ntpKθ of proving a goal G using a KB

K, representations θ, and a reasoning depth of d, is the maximum score of any proof

state originating from the goal up to depth d. A full overview of the neural backward

chaining algorithm used by NTPs can be found in Algorithm 2.

2.4.3 Inductive Logic Programming

Inductive Logic Programming (ILP) tries to learn logical rules from a knowledge

base and use them for reasoning (Muggleton, 1991). NTPs can achieve this by using

gradient descent, instead of older methods such as a combinatorial search over the

space of all possible rules (Quinlan, 1990). They apply the concept of learning from

entailment by learning rules that maximize the proof scores for known ground atoms

and minimize the proof scores for random samples of unknown ground atoms. NTPs

introduce parameterized rules to achieve this, which are rules of a predefined structure

but unknown predicates; for example, r(X, Y)← s(X,Z)∧ t(Z, Y). During training,

the representations of these parameterized predicates are optimized alongside all the

other representations. This allows the model to learn optimal representations of the

predicates, which often correspond to rules that hold in the knowledge base.

Rule templates are used to define the structure of multiple rules by specifying rule

structures, as well as the number of parameterized rules that should be created for

a given structure. For example, for the Kinship, Nations, and UMLS datasets, the

following parameterized rules were used:

• 20 rules of form r(X, Y)← s(X, Y)

• 20 rules of form r(X, Y)← s(Y,X)

• 20 rules of form r(X, Y)← s(X,Z) ∧ t(Z, Y)

14

Algorithm 2: Neural backward chaining

The code is based on the summary by Minervini et al. (2020b). G is a goal, d
is the reasoning depth, H is the head of a rule, B is the body, K is a
knowledge base containing rules and facts, K is the RBF kernel, S is a proof
state, Sψ is a substitution set, Sρ is a proof score, and V is a set of variables.

def or(G, d, S)
for H ← B ∈ K /* Try use any rule in KB to prove */

do
for S ∈ and(B, d, unify(H,G, S)) do

yield S
end

end

end

def and(B, d, S)
if B = [] or d = 0 /* Empty body or reasoning depth reached */

then
yield S

else
for S ′ ∈ or(sub(B0, Sψ), d− 1, S) /* Apply substitution to body,

then try to prove each atom within */

do
for S ′′ ∈ and(B1:, d, S

′) do
yield S ′′

end

end

end

end

def unify(H,G, S = (Sψ, Sρ))

Ti =


{Hi/Gi} if Hi ∈ V
{Gi/Hi} if Gi ∈ V,Hi 6∈ V
∅ otherwise


S ′ψ = Sψ

⋃
Ti /* Extend the substitution set */

S ′ρ = min{Sρ}
⋃
Hi,Gi 6∈V {K(θHi , θGi)}} /* Similarity value is the

minimum similarity across all representations */

return S ′ = (S ′ψ, S
′
ρ)

end

15

After training, a parameterized rule can be decoded by finding the closest predicate

representation to each predicate in the rule.

2.4.4 Learning

Since the neural network in a proof state is constructed using only the operations

of min, max, and the RBF kernel, the final score of the proof (the output of the

neural network) is differentiable with respect to the embeddings of the predicates and

constants. One issue is that known facts that are being proved can be trivially unified

with themselves in the knowledge base, giving no updates during training. This is

resolved by removing the current fact being proved from the knowledge base before

training, then adding it back again afterwards.

Since in general, and particularly for the datasets used by Rocktäschel & Riedel

(2017), negative facts are not provided, sampled corrupted ground atoms are used

instead. This is an approach that has found success in previous work, such as that by

Bordes et al. (2013). For every fact s(i, j) ∈ K, corrupted atoms s(̂i, j), s(i, ĵ), s(k̂, l̂) 6∈
K are found by sampling î, ĵ, k̂, l̂ from the set of constants. The corrupted atoms are

resampled in every training iteration.

Using the negative log-likelihood of the proof success score as a loss function,

NTPs are trained with target scores of 1 for known ground atoms and 0 for the

corrupted atoms. Letting T denote the set of known and corrupted atoms, s(i, j) a

training ground atom, y its target proof success score, θ the predicate and constant

embeddings, d the reasoning depth, and K the knowledge base; the loss function is:

LntpKθ
=

∑
(s(i,j),y)∈T

−y log(ntpKθ (s(i, j), d)− (1− y) log(1− ntpKθ (s(i, j), d)

2.5 Conditional Theorem Provers

2.5.1 Issues with NTPs

As noted by Rocktäschel & Riedel (2017), NTPs suffer from severe computational

limitations. In standard backward chaining, a proof path can be aborted when unifi-

cation with a rule fails, but this happens far less in neural backward chaining, since

unification only fails when predicates do not have matching arities. Thus, almost

every rule in the KB needs to be considered when proving a goal or sub-goal, rather

16

than certain rules being used for a particular goal. When one considers the rule tem-

plates used by Rocktäschel & Riedel (2017) for their 4 datasets, the problem becomes

even more noticeable, as all of them have the same predicate arity in the head of the

rule: two. This means that every rule has to be considered to prove every goal and

sub-goal, which is 60 rules for each of the Kinship, Nations, and UMLS datasets.

They try to solve these issues by proposing two optimizations to NTPs. They use

batch processing (Abdelfattah et al., 2016; Agarwal, 2019) to process many proofs in

parallel on the GPU, updating the unification module accordingly. They also exploit

the sparse gradients created by the min and max operations in the algorithm to

perform truncated forward and backward passes, thus lowering the number of proofs

needed for calculating gradients. However, as Minervini et al. (2020a,b); Bošnjak

(2021) note, NTPs still do not scale to large datasets.

2.5.2 Conditional Rule Selection

Minervini et al. (2020b) introduce Conditional Theorem Provers (CTPs) as a solu-

tion to this problem, proposing that the rules used to prove a goal should be condi-

tioned upon the goal. For example, given a goal such as sister(Joshua, Cindy),

the prover should only consider rules such as sister(X, Y) ← father(X,Z) ∧
daughter(Z, Y) to prove the goal, and not rules such as father(Y, Z)← son(Y,X)∧
grandfather(X,Z). Since in NTPs, predicates and constants are represented by

their embedding vectors, the useful above rule can be represented by a mapping

θsister: 7−→ [θfather:, θdaughter:].

Thus, Minervini et al. (2020b) propose introducing a new module into the system,

select, to reduce the number of rules being considered when expanding upon a goal.

In the or module, instead of considering every H ← B ∈ K, they only consider each

H ← B ∈ selectθ(G). See Algorithm 3 for the adapted or module. The selection

module can be implemented by a sequence of differentiable parameterized functions

select1θ(G), select2θ(G), ..., selectnθ (G) that each, given a goal, produces a set of

sub-goals. We refer to each of these of these functions as a reformulator.

2.5.3 Selection Module

The selection module is thus a function selectθ : A→ [A← A∗], with selectθ(G) =

[select1θ(G), ..., selectnθ (G)]. In the above, V is a set of variables, A ∈ Rk×(Rk∪V)×
(Rk∪V) the embedding of an atom such as sister(X, Cindy), A∗ means any number

of atoms, and A ← A∗ thus represents a rule. Note that this means that we have

17

Algorithm 3: Conditional theorem proving: inclusion of selection module

The rules considered for expansion are conditioned upon the goal G.

def or(G, d, S)
for H ← B ∈ selectθ(G) do

for S ∈ and(B, d, unify(H,G, S)) do
yield S

end

end

end

limited the system to use only binary predicates, which is fine for CLUTRR datasets,

as all of the relationships expressed in the knowledge base are binary. However, the

theory presented in CTPs can easily be extended to work with predicates of a higher

or lower arity by hard coding it into the structure of the reformulators. For the

purposes of this thesis, we will only consider CTPs operating on binary predicates.

This means that each reformulator selectiθ is a function selectiθ : A → A ×
A× ...×A, where the number of A’s in the Cartesian product within the co-domain

is equivalent to the number of atoms in the body of the rules it represents. For

example, a reformulator select1θ : A→ A×A could capture the rule sister(X, Y)←
father(X,Z) ∧ daughter(Z, Y) by mapping the goal G = [θsister, X, Y] to the sub-

goals [[θfather, X, Z], [θdaughter, Z, Y]]. It could also capture other rules, as long as

the head of each rule is distinct. Provided that the positions of the variables in the

corresponding rule structure are fixed, then each reformulator, and hence the entire

select module, is end-to-end differentiable with respect to the model parameters θ.

CTPs are trained in a similar manner to NTPs, with positive examples being as-

signed a target proof score of 1 and negative examples 0. Negative examples are gen-

erated from each CLUTRR task, say with a target of p(c1, c2), by including p′(c1, c2)

with a target proof score of 0 for every p 6= p′ ∈ P , where P is the set of all predicates

available in CLUTRR. To get the answer to a query (c1, c2) during evaluation, the

CTP model computes the score of p(c1, c2) for every p ∈ P and returns the predicate

p with the highest score as an answer.

2.5.4 Reformulator Architectures

Minervini et al. (2020b) introduce three different neural network architectures for

implementing reformulators: linear, attentive, and memory-based goal reformulation.

18

As the most basic implementation, one can define a reformulator linearly by:

selectiθ(G) = FH(G)← FB1(G) ∧ FB2(G)

where the head of the rule is FH(G) = [fH(θG1), X, Y], and the body of the rule

consists of FB1(G) = [fB1(θG1), X, Z] and FB2(G) = [fB2(θG1), Z, Y]. Note that the

reformulator has taken on a particular structure of fixed variable positions in the rule

it represents, as well as a fixed number of atoms in the body. In the above, each

fj : Rk → Rk can be implemented by a linear projection fj(x) = Wjx + b, where

Wj ∈ Rk×k and b ∈ Rk. This is referred to as a linear reformulator. Notice that a

single reformulator can thus capture any number of rules, provided that the structure

of each rule corresponds to the positions of the variables and number of atoms in the

reformulator, and that each rule has a distinct head predicate.

This basic reformulator architecture can be improved upon by incorporating a

prior from the setup of the module. Specifically, predicate symbols used in the rules

that the reformulator represents already exist in the KB, within the available predi-

cates P . This can be exploited to perform attentive goal reformulation, by using the

goal G to generate an attention distribution over the predicate in P :

fj(x) = αEP

where α = softmax(Wjx) ∈ 4|P |−1 is an attention distribution over P , EP ∈
R|P |×k is the predicate embedding matrix, Wj ∈ Rk×|P |, and 4n is the standard

n-simplex 4n = {(α0, ..., αn) ∈ Rn+1 |
∑n

i=0 αi = 1 and ∀i : αi ≥ 0}.
Finally, Minervini et al. (2020b) also introduce memory-based goal reformulation,

drawing inspiration from the work of Miller et al. (2016). This allows one to inspect

the rules by analyzing the model parameters, as the rules are stored in differentiable

memory. Attentive and memory-based reformulators seem to perform far better than

linear reformulators and are comparable in accuracy to each other. Thus, for the

purposes of this thesis, we will use attentive reformulators, as they converge slightly

faster than memory-based reformulators. This means that fewer training epochs will

be needed when evaluating the model.

2.5.5 Summary

Since we have just presented a lot of information defining CTPs as an extension of

NTPs, we provide a brief summary of how CTPs operate when applied specifically to

CLUTRR. The summary departs slightly from the preceding theoretical construction,

19

as it corresponds more directly with how CTPs are implemented in code. However,

it is still equivalent to the theoretical description.

A CTP model has a number of reformulators n, each of which can represent

multiple rules. It also contains representations for predicates and constants. These

are all initialized randomly and optimized during training. The CTP model starts

with a goal p(c1, c2), and initializes G = {p(c1, c2)} as the set of sub-goals. Then,

recursively up to the reasoning depth d, the model applies each reformulator to every

sub-goal in G, generating a new set of sub-goals from the output of the reformulators

with each recursive step. Every time the model steps down recursively, it branches

out into a new proof path for each reformulator. This means n branches exist after

the first step, n2 after the second, and nd branches after the reasoning depth has

been reached. The model maximizes scores over proof paths. Once the reasoning

depth is hit, the model unifies every sub-goal from the proof path with the knowledge

base of facts, given in the CLUTRR task. These similarity values are propagated up,

with the score of the atom in the head of a reformulator being set to the minimum

similarity of all the atoms in its body.

2.6 Related Work

We identify the three main functions of CTPs to be: being able to perform systematic

generalization, inducing sensible representations for predicates and constants used in a

knowledge base, and performing inductive logic programming. Note that they do also

have other attractive qualities, such as built-in explainability for conclusions, since

any answer to a query comes with the set of reformulators and fact embeddings used

to answer the query, representing the rules and facts used. By contrast, other modern

natural language processing methods such as transformer architectures (Devlin et al.,

2019; Wolf et al., 2020) are black boxes that do not provide explanations for their

answers. Attempts have been made to make such deep learning models explainable,

such as by computing the sensitivity of certain predictions with respect to changes

in the input variables (Samek et al., 2018). However, these attempts do not yield

anywhere near the same kind of explainability that a model with built-in explanations

for conclusions, such as CTPs, does.

In the following subsections, we compare CTPs to other related models that pro-

vide one or more of these three functions, and conclude by discussing some other

neuro-symbolic models.

20

2.6.1 Systematic Generalization

Memory-enabled neural architectures (Hochreiter & Schmidhuber, 1997) have been

introduced as a potential solution to the issues that neural networks often have with

systematic generalization. Memory Augmented Neural Networks introduce differ-

entiable memory into the standard neural network architecture, allowing models to

learn to represent and manipulate representations by reading from and writing to

the external memory. This technique was used by Sukhbaatar et al. (2015) to per-

form multi-hop reasoning over text, by Santoro et al. (2016) to learn swiftly from new

data, and by Graves et al. (2014); Joulin & Mikolov (2015); Grefenstette et al. (2015);

Kaiser & Sutskever (2016) to induce algorithmic behaviours. CTPs separate repre-

sentations and calculations in a similar manner, thus improving their generalization

and reasoning abilities.

2.6.2 Knowledge Graph Embedding

Knowledge bases (which are also sometimes referred to as knowledge graphs) can

have their facts embedded in a continuous vector space, such as how CTPs learn

embeddings for the predicates and constants. This can simplify the manipulation of

facts in a KB, while preserving the structure of the KB (Wang et al., 2017). These

embeddings can thus be used to predicate relationships between given constants,

allowing for knowledge graph completion (Lin et al., 2015). This is especially useful

for datasets that have missing facts. While CTPs reason over knowledge bases to

induce representations, other models use a variety of techniques.

Score-based models use distance or semantic similarity-based methods to score

facts in a KB. Distance-based score models (Bordes et al., 2013; Wang et al., 2014;

Lin et al., 2015) embed constants and predicates in the same vector space, with a

distance metric providing functional dependency between the constants using trans-

lations. Semantic similarity-based models encode a similarity function between sym-

bols, from simple functions (Yang et al., 2015; Nickel et al., 2016) to more complex

ones involving different number systems such as the complex numbers or quaternions

(Trouillon et al., 2016; Zhang et al., 2019). Finally, there are some methods that use

reinforcement learning to learn to walk in reasoning steps over knowledge bases, and

thus find paths that can predict relationships between constants (Xiong et al., 2017;

Das et al., 2018; Shen et al., 2018).

21

2.6.3 Inductive Logic Programming

Inductive Logic Programming (ILP) tries to induce rules from facts in a knowledge

base, which can then be used to answer queries (Muggleton, 1991). Works by Sammut

& Banerji (1986); Quinlan (1990); Muggleton (1995); Srinivasan (2001); Muggleton

et al. (2015) use symbolic techniques to implement ILP, by searching over the discrete

space of logical rules to find promising rules for the KB. More recent works, such as by

Cropper & Muggleton (2016) can even construct definitions for new predicates, as well

as learning recursive rules. This is in contrast to CTPs, which can currently only learn

rules of pre-defined structures that have to conform to the syntax of Prolog, instead

of more expressive first-order logic rules. However, unlike CTPs, these symbolic ILP

systems do not learn representations for symbols in the KB, and they often suffer

from serious computational constraints due to the large space of possible rules.

2.6.4 Neuro-symbolic Models

Neuro-symbolic approaches to reasoning (Smolensky, 1988; Garcez et al., 2015) com-

bine neural networks with classical symbolic reasoning. There is a plethora of work

exploring the construction of neural network architectures that draw inspiration from

the structure of logic languages, such as from propositional logic (Towell et al., 1990;

Towell & Shavlik, 1994; Garcez & Zaverucha, 1999; Steinbach & Kohut, 2002), first-

order logic (Shastri, 1992; Hölldobler et al., 1999; França et al., 2014; Donadello et al.,

2017), and even some non-classical logics (Garcez et al., 2007, 2014). More recently,

there has been interest in exploring neuro-symbolic models further, usually with meth-

ods based upon continuous approximations of the semantics of logic (Grefenstette,

2013; Serafini & Garcez, 2016). This has been applied to rule induction and reasoning.

In contrast to Rocktäschel & Riedel (2017), who propose NTPs as a differentiable

implementation of the backward chaining algorithm, Evans & Grefenstette (2018)

provide a differentiable forward chaining reasoning algorithm. Using yet another

approach, Yang et al. (2017); Sadeghian et al. (2019) introduce a method for learning

function-free Datalog clauses (Ceri et al., 1989) from knowledge bases, utilizing a

differentiable graph traversal operator. Many of these approaches suffer from serious

computational constraints, due to their high computational complexity. This means

that they are unsuitable for use on larger-scale datasets with more complex examples.

Minervini et al. (2020a) introduce Greedy Neural Theorem Provers (GNTPs), an

extension of NTPs, as a potential solution to this problem. In GNTPs, only the top

k facts and rules are used during the reasoning process.

22

Chapter 3

Explanation of the Problem

In this chapter, we establish the issue with Conditional Theorem Provers that we

aim to address in this thesis. Minervini et al. (2020b) propose CTPs as a solution

to the issues that NTPs have with computational complexity. However, as we will

note, CTPs still suffer from similar computational issues, due to the number of the

proof paths that need to be considered in backward chaining. We first establish the

need for a potentially large number of reformulators, then motivate for why higher

reasoning depths are desirable in such models. This is justified theoretically and

experimentally. Then, we demonstrate how these requirements lead to CTPs suffering

from computational issues, as well as outlining the proposed solution.

3.1 Number of Reformulators Needed

3.1.1 Expressivity of CTPs

The expressivity of a relational learning model is an important consideration for its

viability (Natarajan et al., 2012; Trouillon et al., 2016). A more expressive model can

capture more types of data and relations than a less expressive one, meaning it can

be applied to more complex datasets. Due to the restrictive nature of the syntax of

Prolog, CTPs are already quite limited when it comes to the structure of expressions

upon which they can reason. However, these limitations go further, as the rules that

a CTP model can capture depend on the structure and number of reformulators in

the model.

As we have already noted, a single reformulator can capture any number of rules,

provided that for each rule, the positions of the variables in the rule correspond to

the positions of their representations in the reformulator. In addition, given an atom

for the head of a rule, a reformulator can only capture one rule with the given head.

23

For example, a single reformulator would be unable to capture both of the following

rules, even though the positions of the variables are the same in both:

sister(X, Y)← father(X,Z) ∧ daughter(Z, Y)

sister(X, Y)← sister(X,Z) ∧ sister(Z, Y)

This is because a reformulator is a function that maps from A ∈ Rk × (Rk ∪ V)×
(Rk ∪ V), meaning that each A has to map to a unique output. As such, to fully

capture all of the rules in a knowledge base, we need as many reformulators as there

are the maximum number of rules with the same head atom. We refer to this number

as the minimal full expressivity bound.

Sinha et al. (2019) do not provide a list of the rules used in CLUTRR datasets.

However, we were able to find their code1 and see the exact list of possible rules.

Minervini et al. (2020b) only focus on capturing the rules with a compositional vari-

able structure (like the ones above), so we will do the same in this work. With this

in mind, the highest number of rules with the same head atom is five. For example,

there are five rules that can be applied to the goal grandfather(X, Y):

grandfather(X, Y)← father(X,Z) ∧ father(Z, Y)

grandfather(X, Y)← mother(X,Z) ∧ father(Z, Y)

grandfather(X, Y)← grandmother(X,Z) ∧ husband(Z, Y)

grandfather(X, Y)← brother(X,Z) ∧ grandfather(Z, Y)

grandfather(X, Y)← sister(X,Z) ∧ grandfather(Z, Y)

So to have a fully expressive CTP model for CLUTRR, one needs at least 5 refor-

mulators. However, CLUTRR is a relatively simple dataset with a limited number of

predicates and ways of proving them. For more complex datasets, more reformulators

would likely be required.

Even if a model is fully expressive, that does not guarantee that it will fully learn

all of the rules in the knowledge base, merely its potential to do so. Reformulators

are implemented by neural networks. Thus, during training, loss that arose from

the incorrect application of one rule being backpropagated through the network of a

reformulator could also update the weights that affect the other rules the reformulator

represents. Depending on the random initialization of the neural network and the

1https://github.com/facebookresearch/clutrr

24

embeddings of the predicates and constants, there could end up being a set of weights

that affect the applications of two particular rules very strongly. If these two rules

require very different weights to be represented properly, then the model could be

unable to learn to represent both of them.

The issue of individual reformulators lacking expressive power could be addressed

by making the reformulator architectures themselves more expressive (increasing the

capacity of the model). This could be done, for example, by increasing the number

of parameters in the neural networks. However, the higher the capacity of the model,

the higher the likelihood that it will overfit on the training data (Caruana et al., 2001;

Salman & Liu, 2019). Thus, we will not expand upon the architectures proposed by

Minervini et al. (2020b). Another potential solution to this is to use more reformu-

lators than the minimal full expressivity bound, so that if a reformulator is unable to

learn every possible rule with a different head, then another reformulator can learn

the ones that it was unable to.

3.1.2 Experimental Results

To see the effect of increasing the number of reformulators, we fix the train and

test reasoning depths, and evaluate the test accuracy of CTPs using a number of

reformulators varying from 1 to 8. The evaluation is done on 1.4 test and 1.10 test,

to test the effect this has on datasets of varying complexity. Furthermore, we present

both the maximum accuracy achieved across all random seeds for each number of

reformulators, as well as the average accuracy. Maximum accuracy can be used as a

gauge for the expressivity of the model, as a model cannot perform better than its

maximum expressivity. The average accuracy indicates how well we can expect such

models to operate in general. Both sets of results can be seen in Figure 3.1 and full

hyperparameter details for this evaluation can be found in Appendix A.2.

These results motivate for the benefit of using more reformulators, as doing so

almost always increases the average accuracy of the model. The maximum average

accuracy for both 1.4 test and 1.10 test is seen when 8 reformulators are used. We

expect that at some point, the number of reformulators used becomes high enough

that the model would start to overfit on the training data, but this is evidently still

not so for 8 reformulators.

Despite the minimal full expressivity bound for CLUTRR being 5, the maximum

accuracy in Figure 3.1 seems to increase sharply as the number of reformulators ranges

from 1 to 3, and then only increases slowly after that. This seems to indicate that

despite CLUTRR having the potential to use 5 different rules with the same head,

25

Figure 3.1: CTP average and maximum test accuracy on datasets 1.4 test and
1.10 test for a varying number of reformulators

26

it rarely uses more than 3. Another possible explanation is that the goals are able

to be proved using other proof paths that do not require the use of the rules that

were not captured. The comparatively high maximum accuracy achieved using 4

reformulators on 1.10 test is an outlier, as no other runs with the same parameters

achieved even close to the same accuracy. Finally, there is a big jump in accuracy

when moving from 1 to 2 reformulators on 1.4 test, whereas this jump only occurs

on 1.10 test when moving from 2 to 3 reformulators. This is due to 1.10 test being a

more complex dataset that uses more rules in its proofs.

3.2 Reasoning Depth

3.2.1 Required Reasoning Depths

Unlike the backward chaining algorithm (Gallaire & Minker, 1978), which relies upon

detecting cycles of rule application to stop expanding upon a goal, CTPs reason up

to a pre-defined reasoning depth and then unify the existing sub-goals with the facts

in the knowledge base. This means that, even if the CTP model has perfectly learned

to represent all of the rules in the knowledge base with reformulators, it still needs a

sufficient reasoning depth to prove the goal. The required reasoning depth for a valid

proof path is the minimum number of recursive steps down, such that every sub-goal

appears in the knowledge base of facts. The reasoning depth needed to solve a task

is thus the minimum required reasoning depth across all possible proof paths.

Notice that the reasoning depth of a task and the number of rule applications

to solve the task are distinct. This is because with every recursive expansion upon

the sub-goals up to the reasoning depth, multiple rules are being applied, each to

a different sub-goal. This can be seen in the CTP and module. Minervini et al.

(2020b) use a reasoning depth of 2 during training and a test reasoning depth of 4,

as the training dataset only requires reasoning up to a depth of 2 to solve the tasks.

This demonstrates the model’s ability for systematic generalization, as it is trained

to solve simple tasks and generalizes to more complex ones. However, higher test

reasoning depths than 4 appear to be required for some of the CLUTRR datasets,

as we demonstrate by example in Section 3.2.2 and experimentally in Section 3.2.3.

More complex datasets than CLUTRR will likely require even higher test reasoning

depths.

27

0

James

1

Orville

2

Charles

3

Nadia

4

Steven

5

Cesar

6

Dan

7

Constance

8

Beatrice

9

Sidney

10

Don

daughter

grandfather

aunt

brotherbrothersister

son

brother

son

son

Figure 3.2: Graph representing the provided facts from an instance of the dataset
1.10 test

3.2.2 Example

To demonstrate these ideas by means of example, we consider a task from 1.10 test. It

contains a knowledge base of facts K = { daughter(Constance, Beatrice), grand-

father(Nadia, Steven), aunt(Dan, Constance), brother(Sidney, Don), brother(

Beatrice, Sidney), son(Steven, Cesar), son(James, Orville), son(Cesar, Dan),

brother(Orville, Charles), sister(Charles, Nadia) }, which can be represented

by a graph as in Figure 3.2.

The dataset entry provides the following reasoning steps to solve the query, which

is the relationship between James and Don:

1. sister(Orville, Nadia) ← brother(Orville, Charles) ∧ sister(Charles, Nadia)

2. sister(Cesar, Constance) ← son(Cesar, Dan) ∧ aunt(Dan, Constance)

3. daughter(James, Nadia) ← son(James, Orville) ∧ sister(Orville, Nadia)

4. daughter(Steven, Constance) ← son(Steven, Cesar) ∧ sister(Cesar, Constance)

5. father(James, Steven) ← daughter(James, Nadia) ∧ grandfather(Nadia, Steven)

6. brother(Beatrice, Don) ← brother(Beatrice, Sidney) ∧ brother(Sidney, Don)

28

7. son(Constance, Don) ← daughter(Constance, Beatrice) ∧ brother(Beatrice, Don)

8. sister(James, Constance)← father(James, Steven)∧daughter(Steven, Constance)

9. nephew(James, Don) ← sister(James, Constance) ∧ son(Constance, Don)

However, these reasoning steps do not all have to be applied in sequence; some

of them can be done in parallel. For example, if proving in the forward direction,

steps 1, 2, and 6 can be done in parallel immediately, as neither of depend on facts

from anywhere but the knowledge base. There is some dependency between the

applications of other reasoning steps, which we represent with a graph in Figure 3.3.

So, to prove the query using backward chaining, CTPs could apply rule 9 to the goal,

then rule 8 to the one sub-goal, then rule 5 to one of the sub-goals of that rule, then

rules 3, 4, and 7 to the sub-goals, then rules 1, 2, and 6 to the sub-goals. After this,

the remaining sub-goals can all be unified with the facts in the knowledge base. Thus,

the required reasoning depth to solve this task is 5.

Note that even though it is notated as branching out from the goal, the entire

graph in Figure 3.3 represents a single proof path. This is because for each sub-goal,

only one reformulator was applied to generate new sub-goals. Multiple proof paths

arise when multiple reformulators are considered for expanding upon each sub-goal.

3.2.3 Experimental Results

To see the effect of using different test reasoning depths, we fix the train reasoning

depth and the number of reformulators. We range from a test reasoning depth of 1 to

5. The evaluation is again done on 1.4 test and 1.10 test. We provide the maximum

accuracy across all runs for each test reasoning depth in Figure 3.4 and for the sake of

brevity, the average accuracy in Figure 3.5. We also discuss the results for the other

test datasets without explicitly displaying them. Full hyperparameter details for this

evaluation can be found in Appendix A.3.

As seen in Figure 3.4, the maximum accuracy on 1.4 test is achieved for a test

reasoning depth of only 3. This is because none of the tasks in 1.4 test require a

reasoning depth greater than that to be solved. However, the accuracy does not

decrease as the test reasoning depth continues to increase, meaning that if one is in

doubt as to what to set the reasoning depth to for maximizing accuracy, one can

always make it higher than needed. The non-zero accuracy that the model achieved

with test reasoning depths less than 3 can be attributed to: tasks in the test set that

truly did not need a reasoning depth of 3, the model learning rules that allow it to

bypass the reasoning steps laid out in the CLUTRR task and solve the problem with

29

Each node represents the application of a rule during backward chaining, with an
edge (x)→ (y) meaning (x) creates a sub-goal which appears in the head of (y).

1 2

3 4

5

6

7

8

9

Figure 3.3: Graph representing the dependency of reasoning steps in Figure 3.2

fewer steps, or the model getting lucky and finding the correct answer with an invalid

proof path. The latter is not terribly unlikely, as CLUTRR only has 22 possible

predicates, meaning that even an answer given completely at random has a 1
22

chance

of being correct.

The accuracy on 1.10 test continues to increase all the way up to using a test

reasoning depth of 5. Tasks such as that shown in Figure 3.2 demonstrate why this

is the case: some tasks in 1.10 test need a reasoning depth of greater than 4 to be

solved. The datasets of 1.9 test, 1.8 test, and 1.7 test also see an increase in accuracy

from using a test reasoning depth of 5 instead of 4, with the effect becoming less

pronounced as the complexity of the dataset decreases. For every dataset, it is never

the case that increasing the test reasoning depth lowers the accuracy.

While we have demonstrated that it is never harmful and often beneficial to in-

crease the test reasoning depth for greater accuracy, doing so can lead to some serious

issues with evaluation time.

30

Figure 3.4: CTP maximum test accuracy on datasets 1.4 test and 1.10 test for a
varying test reasoning depth

31

Dataset d = 1 d = 2 d = 3 d = 4 d = 5

1.4 test 18.61± 4.01 31.17± 7.65 71.00± 9.62 71.00± 9.62 71.86± 8.89

1.10 test 15.57± 1.16 22.95± 2.68 45.90± 4.39 68.31± 7.52 75.96± 7.84

Figure 3.5: CTP average test accuracy and standard deviation on datasets 1.4 test
and 1.10 test for a varying test reasoning depth

3.3 Computational Issues

3.3.1 Time Complexity Analysis

We start by presenting a theoretical analysis of the time complexity of CTPs. We

consider two base operations that we wish to count: the number of reformulator

applications (data being passed through a neural network) and the number of sub-

goals that need unifying with the knowledge base after the reasoning depth is reached

(comparisons with all fact embeddings using the RBF kernel). The remainder of

the operations in CTPs are either tied into one of these two or take constant time.

We count these operations with respect to the number of reformulators used n, the

reasoning depth d, and the maximum number of atoms in the body of any reformulator

used m.

Let si be the number of sub-goals after the model has applied i recursive expan-

sions upon the goal. With each recursive step down, n reformulators are applied to

every sub-goal, with each reformulator generating O(m) new sub-goals to be proved.

This means O(nm) new sub-goals for each existing sub-goal, so si+1 = O(si × nm).

Noting that s0 = 1, representing the query passed to the model, we see that the

number of sub-goals after the test reasoning depth has been reached is:

sd = s0 ×O((nm)d)

= O((nm)d)

Furthermore, at depth i with si sub-goals, there are nsi reformulator applications.

Thus, the total number of reformulator applications until the reasoning depth has

been reached is:

32

rd = ns0 + ns1 + ns2 + ...+ nsd−1

= O(n) +O((nm)1n) +O((nm)2n) + ...+O((nm)d−1n)

= O((nm)d−1nd)

= O(ndmd−1d)

= O((nm)dd)

Then since n > 1 and m > 1 for any CTP model of non-trivial complexity,

rd = O((nm)d). Thus, as sd = rd, we state that the time complexity for CTPs as a

whole is O((nm)d). Note that this is the time complexity for a single query and that

to evaluate or train on a dataset, these operations will need to be performed for every

task in it. However, the number of tasks is simply linear in the size of the dataset, so

this is not a concern.

The main issue with this time complexity is the raising to the power of d. Expo-

nential time complexities get unreasonably large very quickly and can be completely

untenable to work with. For a fixed depth d, the time complexity is a d-degree poly-

nomial in n and m, which can also cause difficulties for a suitably large value of d. We

have already provided motivation for using a test reasoning depth of 5 on CLUTRR,

meaning that this would become degree 5 polynomial.

3.3.2 Wall-Clock Time

As CTPs have demonstrated the ability to learn using only small reasoning depths,

generalizing to larger reasoning depths, the main point of concern with respect to

time taken is the time taken is during evaluation. This is because CTPs can always

be trained on simple examples, with the computational issues presenting themselves

when the test reasoning depth has to be made high enough to make the model fully

expressive. As such, we compute the average evaluation time across all CLUTRR

datasets, noting that the results are not entirely stable due to them being evaluated

and aggregated across a variety of machines. We show this with respect to the number

of reformulators in Figure 3.6, and with respect to the test reasoning depth in Figure

3.7. The hyperparameters for these experiments can be found in Appendix A.2 and

Appendix A.3 respectively.

For reference, the longest evaluation time was for a test reasoning depth of 5, with

5 reformulators, on the 1.10 test dataset. It took 16.7 hours to evaluate.

33

Figure 3.6: CTP average evaluation time across all datasets for a varying number of
reformulators

Figure 3.7: CTP average evaluation time across all datasets for a varying test rea-
soning depth, using a logarithmic scale

34

3.3.3 Outline of Solution

Since the time complexity of CTPs is O((nm)d), optimizing CTP evaluation time

consists of trying to keep each of these variables as low as possible. The maximum

number of atoms in the body of any reformulator used m is almost impossible to

reduce, as it is completely determined by the rules the model is trying to capture

in the knowledge base. A possible technique for lowering it could be to use multiple

rules with fewer atoms in the body to represent a single rule with more atoms in the

body. For example, the rule h ← b1 ∧ b2 ∧ b3 ∧ b4 could instead be captured by a

combination of the rules h1 ← b1 ∧ b2, h2 ← b3 ∧ b4, and h ← h1 ∧ h2. However,

this means increasing the number of rules in the knowledge base (thus potentially

increasing the number of reformulators n) and increasing the reasoning depth needed

for any path containing the original rule by 1. This would likely just increase the

evaluation time. However, for CLUTRR, this is not an issue, as m = 2 is fixed for all

of the rules concerned.

The depth d is also challenging to reduce, as a certain depth is required for full

expressivity on the test datasets. However, a dataset may contain tasks that do

not require the maximum test depth to be solved. This is not often the case for

CLUTRR, as the tasks are grouped into datasets by their difficulty. However, it does

occur intermittently, and one could envision datasets where the required reasoning

depth is radically different across tasks. Thus, to optimize the model, one could try

adding the capacity for it to realize when it has arrived at the required reasoning

depth and stop recursively expanding upon the goal. A potential way to do this

would be to attempt unification with the knowledge base at every depth and stop

expanding when the similarity values are all higher than a given threshold. However,

we choose not to focus on such a technique in this thesis, leaving it for future work.

Our approach is an attempt to keep the number of reformulators n used at each

expansion step as low as possible, minimizing the number of proof paths that need

to be considered. Notice that every CLUTRR task has a valid proof path, as it is

provided alongside each task. Thus, if the reformulators have perfectly captured the

rules in the knowledge base and the model can identify which reformulator to apply

at each reasoning step to construct the valid proof path, then only one reformulator is

needed for each sub-goal expansion to achieve full expressivity. Hence, the problem to

be solved is: when considering a sub-goal to be expanded, predict which reformulator

is the one most likely to maximize the proof score. In the following chapter, we

elaborate on our proposed method for doing so.

35

Chapter 4

Method

In this chapter, we introduce in general the approach that we use to solve the problem

of choosing the optimal reformulator for expansion. More specific details about the

various ways in which we attempted this are discussed in Chapter 5 and Chapter 6. We

first provide motivation as to why this appears to be a solvable problem, then discuss

how we expect this to speed up the model. Next, we introduce the machine learning

paradigm that we adopt to solve the problem: reinforcement learning. We formally

define the specific reinforcement learning algorithm that we use, our implementation

of it, and discuss several issues encountered with the architecture. Finally, we discuss

the experiment design in this thesis: what hyperparameters are used in CTPs, the

training procedure we adopted, and the baseline that needs to be outperformed to

call this work a success.

4.1 Optimising Proof Paths

4.1.1 Motivation for the Existence of a Solution

When mathematicians attempt to prove something, they do not simply apply every

rule they know to the problem again and again, stopping when they have finally

arrived at a solution. Rather, they have an intuition, built up from experience, as to

which rules are going to be the most promising for constructing a valid proof. The

rules needed will depend on the problem, but this is something that mathematicians

have an understanding of: an understanding that continues to get better as they deal

with similar problems. They will then try to use these rules, expanding upon the

proof until it either succeeds or they realize that it has failed. In the latter case, they

will go back and try another rule that they initially thought to be less promising.

The ability of mathematicians to learn this skill indicates that we also ought to be

36

able to train a model to select the rules for expansion that are most likely to lead to

a successful proof.

Aside from this somewhat philosophical motivation, other works have already

explored models that learn to traverse a knowledge base. Das et al. (2018); Xiong et al.

(2017) use reinforcement learning to learn inference paths in large knowledge bases.

Both of these works are based upon the path ranking algorithm (Lao et al., 2011),

which uses random walks with restarts to perform several upper-bounded depth-

first searches to find paths along relations. When combined with elastic-net based

learning, the algorithm can learn to choose paths which are more likely to complete

the inference.

Das et al. (2018) propose MINERVA, a method for searching a knowledge graph for

answer-providing paths using reinforcement learning, conditioned on the query. Given

a knowledge graph, it attempts to learn a policy which, given a query of the form

predicate(constant1, X), starts from constant1 and walks over relations (edges in

the knowledge graph), choosing a relation at each step, conditioned upon the query

predicate and the walk so far. This is done with reinforcement learning by trying

to maximize the reward: reaching the correct answer constant. The model achieves

state of the art accuracies on the Countries, UMLS, and Kinship datasets.

Xiong et al. (2017) adopt a similar but slightly simpler approach with DeepPath,

which also uses reinforcement learning to find paths between pairs of constants. How-

ever, in contrast to Das et al. (2018), they also condition upon the answer constant

while traversing the graph. This is because they aim to solve the simpler task of

predicting whether or not a fact is true, rather than the query-answering tasks that

MINERVA can be applied to. They manage to achieve results that outperform the

path ranking algorithm in both the FB15K-237 (Bordes et al., 2013) and NELL-

995 (Carlson et al., 2010) datasets.

While our proposed method is not exactly what MINERVA and DeepPath do, their

existence and success at least indicate that the problem of learning which reasoning

steps to take in a knowledge base is a solvable one. Finally, we also draw inspiration

for our method from the work of Li et al. (2020), who provide motivation for training

large transformer models and then heavily compressing them before testing. In a

similar manner, our method aims to utilize a large number of reformulators when

training, and then only use the selected ones during evaluation. This is particularly

seen in one of our initial attempts, outlined in Section 5.4.

37

4.1.2 Choosing Reformulators

Given that the time complexity of CTPs is O((nm)d), having n reformulators and

only selecting k at each expansion step would lead to a time complexity of O((km)d)

instead, which is just O(md) if k is fixed. Ideally, we would just be able to use k = 1

and learn to select the perfect reformulator at every expansion step. However, initial

experiments demonstrated this to be an almost impossible task. This makes sense,

as even well-trained mathematicians rarely try only one proof path to solve their

problems.

A neat solution would be to explore one proof path and then back-track to try

another if it appears to fail, continuing on in this way until the problem has been

solved. However, this method does not apply well to CTPs for two reasons. Firstly,

the architecture of CTPs does not lend itself well to back-tracking up from a certain

depth, as queries are batched together and all sent through the reformulators at the

same time. The only data propagated back up is the proof scores, which are then

maximized across the reformulators: corresponding to maximizing across the proof

paths. Secondly, since CTPs perform unification using an RBF kernel, there is no

definitive way to say that a proof path has “failed”; it will simply have a low proof

score. One could potentially add a hyperparameter to the model that gives an upper

bound on “successful” proof scores, with proof paths being abandoned if they do not

score higher than the bound. However, we choose not to adopt this approach, as it fails

to integrate into the aforementioned process of the CTP architecture. Furthermore,

proof scores vary between tasks, and fixing a bound that is high enough to cut off

failed proof paths but low enough to ensure that there is always at least one successful

proof path is nigh impossible.

Rather, we fix some value of k as a hyperparameter of the model, to be tuned

for maximizing accuracy and satisfying the computational constraints of the test

datasets. This means that instead of n reformulators being used at every expansion

step in the reasoning, only k are selected and used. We refer to the module making

these selection decisions as the selection module. This is distinct from the selection

module discussed in the architecture of CTPs. Henceforth, all instances of the term

selection module refer to the module deciding which k of the n reformulators to use.

4.1.3 Wall-Clock Time Speedup

We see that if the above method is used, there is at least a theoretical speedup from

the baseline of CTPs. Ideally this would translate into a speedup in wall-clock time as

38

well, but this is not guaranteed for all datasets and values of m and d. The larger the

values of m and d, the greater the effect of choosing k from n reformulators will have;

this follows directly from the computational complexity O((km)d). Furthermore,

larger and more complex datasets will also see this effect being more pronounced, as

they contain more facts that need to be unified with the O((km)d) sub-goals once the

test depth is reached.

Counteracting this is the overhead that comes from having to do the selection

at each reasoning step, instead of just applying every reformulator. If the overhead

is high enough, then better wall-clock times might not present themselves for the

evaluations we do on CLUTRR. However, even if this is not the case, we argue that

the theoretical speedup of this method proves its usefulness regardless: eventually

the dataset complexity and reasoning depths will be high enough that the resulting

theoretical speedup overcomes the overhead that comes with the method. Serious

computational concerns for CTPs will occur more often for complex datasets and high

reasoning depths anyway, which is exactly when the theoretical speedup becomes an

advantage.

Also, note that we are mainly concerned about the wall-clock evaluation times,

and not the training times. This is because when models are being used to solve

tasks that require an answer to be given within certain time constraints, it is only the

evaluation time that matters. How long the model took to train is independent of

its usefulness in the time-constrained scenario. Furthermore, for CTPs in particular,

being able to train at low reasoning depths means that computation time problems

will rarely occur when training. However, high training times mean that the model

takes longer to optimize, so we will also try to keep them as low as possible.

Finally, in selecting k from n reformulators, we do expect the accuracy to drop

somewhat, as fewer proof paths are being considered. It will not decrease if the model

is able to perfectly learn which reformulators to choose, but we expect this to not be

the case.

4.2 REINFORCE

4.2.1 Reinforcement Learning

Reinforcement learning (Sutton & Barto, 2018) is a powerful machine learning tech-

nique where the model learns to map situations to actions, so as to maximize some

kind of reward. The model is not told which action it ought to take, but rather learns

over time which actions are good in different scenarios. It does this by trying different

39

actions and learning to prefer the ones that lead to the greatest reward, where the

environment and the reward function are defined by the creator of the model.

More formally, reinforcement learning for our purposes is performed on a deter-

ministic Markov decision process (S,A, δ, R). S (the state space) is the set of states

that the model can be in, A (the action set) specifies the set of actions the model can

take when in a state, δ (the transition function) defines which state the model ends

up in after performing an action in a state, and R (the reward function) defines the

reward the model receives for ending up in a given state.

The task of the model is to learn a policy function πθ : S → A such that, given

some initial state s0, πθ produces a sequence of states s0, s1, ..., sd by si+1 = πθ(si)

such that the reward R(sd) is maximized after d actions. In this case, θ represents

the parameters of the policy function. For our purposes, this policy function will be

the agent that decides which reformulators to use to expand upon a sub-goal.

4.2.2 Policy Gradient Descent

In an environment with a finite state space, one could implement the policy πθ as

a 2-dimensional array that maps every state directly to an action, learning which

actions to use over time. However, in cases such as ours where the state space is

infinite and continuous, such an approach will not work. We have to turn to a

Q-value approach such as Deep Q-Networks (Mnih et al., 2015) or policy gradient

methods such as REINFORCE (Williams, 1992). Deep Q-Networks attempt to learn

a function Q : S×A→ R that approximates the reward that will result from a given

state-action pair. The function Q is implemented by a deep neural network, hence

why the method works for a continuous state space.

On the other hand, policy gradient methods learn a policy function πθ : S →
[0, 1]|A| which, given a state, outputs a probability distribution over actions that

represents the model’s confidence of each action maximizing the reward. This policy

function is again implemented by a neural network, with a softmax function after

the output layer to convert the outputs into a probability distribution. The softmax

function is applied to a k-dimensional vector and is defined by:

softmax(x)i =
exi∑k
j=1 e

xj

We chose to adopt REINFORCE into our model as the solution for selecting

reformulators. It is used by Liang et al. (2017); Das et al. (2018); Xiong et al. (2017)

40

to solve tasks related to reasoning and shows great promise for solving our particular

problem. The basic procedure for REINFORCE can be seen in Algorithm 4.

Algorithm 4: REINFORCE

In this algorithm: θ represents the model parameters, N is the number of
episodes, K is the number of episodes per batch, T is the number of steps in
an episode, γ is the discount factor used to make further away rewards
worth less, πθ(s)a gives the probability of action a from the distribution
produced by πθ applied to s, and α is the learning rate.

n = 0
while n < N do

for K episodes in batch do
Generate episode s0, a0, R0, ..., sT , aT , rT using the policy πθ to output
probability distributions which are then sampled from to get actions

for t ∈ 1, ..., T do

Calculate discounted rewards from each state: Gt :=
∑T

i=t γ
iRi

end
n := n+ 1

end

Calculate policy loss for entire batch: L(θ) := − 1
K

∑K
t=1 ln(Gtπθ(s)at)

Update policy: θ := θ + α∇L(θ)

end

4.2.3 Implementation

In this section, we introduce the specifics of our particular implementation of REIN-

FORCE. Let us first define the deterministic Markov decision process (S,A, δ, R).

• States. A state in the model represents which sub-goal we are currently

considering for expansion in the proof. It is thus an atom A where A ∈
Rk × (Rk ∪ V) × (Rk ∪ V). In order that the policy estimator may be im-

plemented by a neural network, we define S := Rk × Rk × Rk = R3k.

• Actions. The set of possible actions from any state is the reformulators that

could be used to expand upon the sub-goal. With n reformulators, we thus have

A = {1, ..., n}. Note that as we are choosing k reformulators for expansion,

multiple actions are chosen for a given state by sampling without repetition

from the probability distribution πθ(s).

41

• Transition Function. After some subset of reformulators is chosen, the CTP

model proceeds as normal, expanding out into a different proof path for each

reformulator. Thus, we have a deterministic transition function δ defined by

this process.

• Rewards. The proof score is an obvious choice for reward signal, as higher proof

scores correspond to the model performing better on positive tasks. However,

rather than discounting future rewards, we can use the fact that proof scores

are propagated back up through the CTP model to have access to the exact

score that choosing a reformulator leads to. The reward given for choosing a

reformulator is thus the maximum proof score across all proof paths originating

from the reformulator applied to the current sub-goal. This can be extracted

directly from the CTP architecture.

The policy network is implemented by a neural network with a single hidden

layer, containing 30 hidden nodes. We use a Rectified Linear Unit (ReLU) activation

function before the hidden layer: ReLU(x) := max(0, x). The output of the policy

network is thus

πθ(s) := softmax(W2 × ReLU(W1 × s))

and the loss is given by

L(θ) = − 1

B

B∑
b=1

Rb × ln(πθ(sb)ab)

where B is the batch size, ab is the action chosen in a particular task in the batch,

Rb is the proof score that resulted from the action, and πθ(sb)ab is the probability that

action ab has in the distribution πθ(sb). The loss is applied separately for each of the

k actions (reformulators) chosen. Rather than having episodes, we simply execute the

CTP model as usual, applying the policy and calculating the loss at every expansion

step in the reasoning. For disambiguation, we refer to this model as RL-CTP and

the original baseline CTP model as CTP.

We also considered an alternative to this architecture but chose to rather imple-

ment the above instead. In this alternative, instead of there being one policy network

that generates distributions over the reformulators, each reformulator would have its

own neural network that, given the current sub-goal, should determine whether or not

to use the reformulator for expansion. The reward given to each neural network would

again be the proof score, but regularized to prevent the model from always using the

42

reformulator (as always applying every reformulator is the best way to maximize the

proof score). Getting the regularization fine-tuned enough to ensure that multiple

reformulators are being chosen, but that not all of them are, appeared to be a very

difficult problem. As such, we decided to rather focus on the above-described imple-

mentation, as it allows one to specify an exact number of reformulators to use with

each expansion.

4.2.4 Issues Encountered with the Architecture

There were several issues in the REINFORCE architecture that we experienced during

development. These are issues particular to how the reinforcement learning is imple-

mented and not to how it is integrated into the existing CTP code. We addressed all

of them and will outline the solutions briefly in this section. Further improvements

that could be made to the architecture are discussed in Section 6.4.

The first issue encountered was that the model exhibited numerical instability

during training. The gradients of the model would frequently explode, yielding un-

reasonably large weights in the neural network. These large weights lead to very high

values being passed through to the softmax function, giving undefined probabilities

as outputs. Around 78% of runs failed due to this issue. We addressed it by replacing

the softmax function with a log softmax function, which is known to be numerically

more stable and less likely to lead to undefined probabilities1. log softmax(x) is de-

fined as log(softmax(x)), but it is not computed that way. Instead, it is computed

as:

log softmax(x) = log(softmax(x))

= log(
ex∑k
j=1 e

xj
)

= log(
ex−beb∑k
j=1 e

xj−beb
)

= log(
ex−b∑k
j=1 e

xj−b
)

= (x− b)− log(
k∑
j=1

exj−b)

1https://discuss.pytorch.org/t/how-to-avoid-nan-in-softmax/1676

43

Setting b := maxi≤k(xi), the final line of the equation, which is used to compute

the value of log softmax(x), has stability against overflow and underflow2. We use

log softmax instead of softmax for all computation, only calculating the softmax

probabilities when needed for sampling by exponentiating: softmax(x) = elog softmax(x).

Another issue we had not accounted for in the original design is that the probabil-

ity distribution πθ(s) may contain fewer non-zero elements than k. This means that

when sampling without replacement, it is not possible to get k different choices for

reformulators to use. However, the architecture outputting such a distribution is not

an inherently bad phenomenon; it can be a good sign that the model is very confident

as to which reformulators will maximize the proof score. Thus, if such predictions

arise, we only expand k′ reformulators, where k′ is the number of non-zero entries in

πθ(s).

A third problem, which only occurred to us after many experiments showing

promising results had been run, is that the reward signal being used was the proof

score across all queries, not just the positive tasks. This is an issue, as the target

proof score of a negative task is zero, so the model should be acting to minimize the

proof score for negative tasks. However, this did not seem to disrupt the training

of the model, so we did not address the perceived issue. Since the reformulators are

pre-trained before the selection module is trained (discussed in Section 4.3.2), most

negative tasks have low proof scores for all proof paths, so it is almost impossible for

the selection module to choose reformulators that maximize that proof score. On the

other hand, positive tasks have particular proof paths that, when used, will maximize

the proof score. Thus, the selection module only really learned to maximize proof

scores when positive examples were given to it. Nevertheless, a potential way to

address this issue is discussed in Section 6.4.

The final issue encountered was how to deal with variables in the selection module.

The policy estimator is a function from R3k, so real values have to be assigned to

variables to use the policy estimator for expanding upon a sub-goal with at least one

variable. We simply fixed the value of a variable to be {0}k. This is not ideal, as the

embedding {0}k already has some kind of meaning in the context of the knowledge

base embeddings. However, this solution yielded satisfactory results, so we left it as

is. Again, potentially better ways to address this are discussed in Section 6.4.

2https://timvieira.github.io/blog/post/2014/02/11/exp-normalize-trick

44

4.3 Experiment Design

4.3.1 Model Hyperparameters

CTPs have many hyperparameters that can be used to tune the model. They are

shown and explained in Figure 4.1. To save on training time, we assume that the

fine-tuning done by Minervini et al. (2020b) was done optimally and adopt their

hyperparameters to be used in our CTP models. Full details of these fixed hyperpa-

rameters can be found in Appendix A.1. In particular, we fixed the training depth

to 2 and the testing depth to 4. Even though the benefits of using RL-CTPs will

manifest more clearly when using a test depth of 5 and such a test depth is needed

for full expressivity, we choose to stick to the test depth of 4, as this allows us to use

the optimized hyperparameters of Minervini et al. (2020b).

To extend CTPs to RL-CTPs, we added 3 new hyperparameters. The rl-learning-

rate specifies the learning rate of the policy estimator, rl-actions-selected specifies

how many reformulators k should be chosen at each expansion step, and rl-epochs

specifies how many epochs the selection module should be trained for. We build upon

the existing implementation3 of CTPs in PyTorch (Paszke et al., 2019), augmenting

it with our proposed selection module.

4.3.2 Training Procedure

Our initial approach to training the selection module was to train it in conjunction

with the reformulators. However, this yielded extremely poor results, which we can

attribute to three issues we perceive in the training approach. The first is that, since

the reformulators take a reasonable amount of training to begin to represent actual

rules that hold in the knowledge base, the optimal proof paths being learned by the

selection module up until that point are meaningless. In such a scenario, the module

is initially being trained to learn reasoning patterns that will not hold true when the

reformulators have converged to actual rules.

We also noticed that during training, the selection module very quickly learned

to always prefer some reformulators over others. This is a problem that compounds

upon itself, as the same set of reformulators being selected more often means that

they will be trained more often, leading to them better representing rules in the KB,

and the selection module being more likely to pick them going forward. The RL-CTP

model then ends up only having some k′ reformulators which are always chosen, with

3https://github.com/uclnlp/ctp

45

Name Type Explanation

batch-size int The number of elements in each training batch

embedding-size int The size k of the embedding space Rk

epochs int The number of training epochs

evaluate-every int How often (in terms of number of epochs) to evaluate
on the provided test sets

hops string A list of integers r1, r2, ..., rn ∈ Z, with each ri specify-
ing to include a reformulator i of compositional variable
structure, with ri atoms in the body. For CLUTRR,
ri = 2 ∀i

init string How to initialize the embeddings (e.g. “uniform” mean-
ing to sample from a uniform distribution)

init-size float How much to scale up the predicate embeddings by after
initialization

k-max int How many of the top scores to retain when expanding

learning-rate float The learning rate for the entire model

max-depth int The reasoning depth during training

nb-rules int The number of rules to store when using a memory re-
formulator

optimizer string Which PyTorch optimizer to use

ref-init string How to initialize the reformulators

reformulator string Which reformulator architecture to use from the options
of linear, attentive, and memory

seed int The seed used to initialize all random processes in the
model

slope float The slope of the RBF kernel

test string The file path to the test datasets to use for evaluation

test-batch-size int The batch size during testing

test-max-depth int The reasoning depth during testing

tnorm string How to combine proof scores together from the sub-
goals of a reformulator. We always use minimization,
but the architecture also makes multiplication and av-
eraging available

train string The file path to the dataset to use for training

Figure 4.1: CTP Hyperparameters

46

the other n−k′ reformulators never chosen and barely even trained. This completely

defeats the point of using RL-CTPs over CTPs, as one may as well instead use a CTP

model with k′ reformulators.

The final issue is that having such a training approach makes it impossible to

tune how many epochs the reformulators are trained for without also affecting how

long the selection module is trained for. This becomes particularly problematic if one

needs to stop training either the reformulators or the selection module at some cut-off

point to prevent over-fitting.

Instead of this, we adopt the procedure of training the reformulators first, in

the normal CTP way. Then, once the reformulators are trained, we train only the

selection module, no longer applying the loss to the reformulators. This alleviates all

of the above-described issues, as it means the selection module is learning to select

proof paths over actual rules in the knowledge base, all reformulators are properly

trained, and we can independently control how long the reformulators and selection

module are trained for. This does mean extra training time, but it only multiplies it

by a constant factor of 2, so the time complexity of training does not change.

4.3.3 Outperforming the Baseline

As already stated, to prove that RL-CTPs can be an improvement to CTPs, we do

not need to demonstrate a speedup in wall-clock time, as the theoretical speedup

suffices. However, we require that, at the very least, the accuracy obtained when

using n reformulators and choosing k is better than just using k reformulators. If it

is not, then there is no point in using RL-CTPs, as using k reformulators in CTP

models has the same time complexity as having n and choosing k in RL-CTP models.

Note that while we do care about the average performance of the models across

all seeds, it is more important to consider the best performing random seed, as the

seed can also be optimized as a hyperparameter. This is especially pertinent for deep

reinforcement learning architectures, such as that used in RL-CTPs, where the model

initialization can play a large part in determining the accuracy of the model (Colas

et al., 2018; Henderson et al., 2018; Clary et al., 2018). Thus, for a fair comparison,

we apply the same hyperparameter tuning to all of our models. To get the accuracy

of a model, we run it across 6 different seeds and select the model that displays the

highest accuracy on the evaluation dataset. We then report the model accuracy on

all of the test datasets. This accuracy prediction is made more confident by repeating

the preceding process 5 times and reporting the mean across all 5 of the optimization

procedures.

47

For optimizing hyperparameters, we adopt the same approach to evaluation and

test sets as Minervini et al. (2020b). We perform two different optimizations: the first

has hyperparameters tuned on an evaluation set of 1.3 test and is tested on all other

datasets, and the second is tuned on an evaluation set of 1.9 test. The full model

training procedure is described in Algorithm 5.

In this chapter, we argued for the existence of a solution to the problem of choosing

the optimal reformulators for expansion, as well as demonstrated how this allows us

to solve the computational issues faced by CTPs. Using policy gradient descent,

we formally defined a model architecture for RL-CTPs: our proposed extension of

CTPs. Lastly, we also noted what is required for RL-CTPs to be an improvement

upon CTPs. In the following two chapters, we discuss our concrete implementations

of RL-CTPs.

48

Algorithm 5: Model training procedure

def get best model(model, train set, hyperparameter grid, evaluation set)
best model = None
best accuracy = -1
for hyperparameter set ∈ hyperparameter grid do

train model(model, train set)
accuracy value = accuracy(model, evaluation set)
if accuracy value > best accuracy then

best accuracy = accuracy value
best model = model

end

end
return best model

end

def get best seeded model(model, train set, hyperparameter grid,
evaluation set)

pick 6 seeds S = {s0, ..., s5} at random
include seeds S in hyperparameter grid
return get best model(model, train set, hyperparameter grid,
evaluation set)

end

def get model accuracy(model, train set, evaluation set, test sets)
initialize hyperparameter grid
total accuracy = 0
for 5 iterations do

best model = get best seeded model(model, train set,
hyperparameter grid, evaluation set)

test accuracies = accuracy(best model, test sets)
total accuracy += test accuracies

end
return total accuracy / 5

end

get model accuracy(model, train set, 1.3 test, test sets)
get model accuracy(model, train set, 1.9 test, test sets)

49

Chapter 5

Initial Attempts

In this chapter, we cover in more detail the various approaches we adopted to imple-

ment the architecture described in Chapter 4. More specifically, we outline each of

our failed attempts to solve the problem before we arrived at the solution described

in Chapter 6. We do this to report upon the work that we did, show the thought

process that led to the working solution, give insight as to why various methods failed,

and provide more information about the inner workings of CTPs. Since the methods

did not yield satisfactory results, we refrain from providing technical details around

their implementations, and rather save this for the working solution. We begin by

discussing our first attempt, a recursive solution, following on to our attempted im-

provement upon it by performing the same process iteratively. Next, we discuss the

performance of CTPs when only certain subsets of reformulators are utilized during

evaluation, using this as motivation for why our first batch element solution might be

viable. Finally, we present and analyze the results of our first batch element solution.

5.1 Recursive Method

5.1.1 Core Implementation Issue with the Architecture

While the methodology has been almost fully described in Chapter 4, there is a core

problem with integrating the selection module into the existing CTP architecture.

It is this which led to the sequence of failed attempts to implement RL-CTPs. The

issue arises around batching; when proposing NTPs, Rocktäschel & Riedel (2017)

batch process many proofs together, so that they may be expanded upon in parallel

on GPUs. The same approach is taken by Minervini et al. (2020b) for CTPs.

Sub-goals, represented by tensors, are passed through in batches to the methods

(computer programming methods) responsible for expansion, with every reformulator

50

then being applied to every sub-goal in the batch. This process is summarized in

Algorithm 6. However, in RL-CTPs, for each sub-goal in the batch, only k specific

reformulators ought to be used to expand upon it. This means that the tensors

representing the sub-goals can no longer be passed as one cohesive batch through the

neural networks of the reformulators. Instead, each sub-goal in the batch needs to be

passed through a specific subset of k neural networks. Figuring out how to do this

efficiently was at the heart of the problems we encountered.

Algorithm 6: Conditional theorem proving: batch expansion

S is a batch of sub-goals.

def expand(S)
for each reformulator ri do

Snew := ri(S)
Then carry on with new sub-goals Snew

end

end

5.1.2 Naive Solution

Our initial approach was to utilize the existing CTP methods for expansion, by sim-

ply adding extra recursion to them. If a method receives a batch with more than 1

element, it will iterate through all of the elements of the batch, calling recursively

to itself with the same arguments, but with only a single element in the batch. The

results of all these recursive calls are then collected back into a batch and returned.

If a method receives a batch with only 1 element, then it calls to the selection mod-

ule to get a list of reformulators to use for the sub-goal in the batch, skipping all

reformulators that were not included in the list. The method otherwise proceeds as

normal, with the resulting proof scores being used as rewards to update the selection

module. The method is illustrated in Algorithm 7.

While relatively simple to understand and to implement, this method yielded

immediately disastrous results. A single training epoch took around 41 hours to

run and evaluation on 1.10 test took around 17.5 hours. Despite this still being

faster than CTPs in a theoretical sense, we judged that the training times were far

too long for this method to be feasible and decided to abandon it in favour of an

iterative attempt to achieve the same result. We suspected that much of the increase

51

Algorithm 7: Recursive RL-CTPs

S is a batch of sub-goals.

def expand(S)
if |S| > 1 then

results = []
for j ∈ {0, 1, ..., |S| − 1} do

results[j] = expand(S[j])
return results

end

end

s := S[0] /* The only sub-goal in S */

selected reformulators = selection module(s)

for each reformulator ri ∈ selected reformulators do
Snew := ri(S)
Then carry on with new sub-goals Snew

end

end

in computation time was coming from all the recursive calls being made, as there is

significant overhead in doing so1. Thus, we judged that if the same solution could be

implemented iteratively, without the need for so many recursive calls, it might solve

the computational issues.

5.2 Iterative Method

5.2.1 Mismatching Batch Sizes

Like the recursive attempt, this solution integrates into the existing CTP methods

that are used for expanding upon sub-goals. It begins by addressing a problem that

was not even considered in the recursive solution, as it was already far too slow to

investigate further. The issue is that the aforementioned CTP methods also have

the fact and constant embeddings passed along as arguments, to be used when the

reasoning depth is reached and the sub-goals are unified with the knowledge base.

When a sub-goal is expanded upon into m new sub-goals (recall that this is always

m = 2 for CLUTRR), the next recursive step down has both of the sub-goals as

1https://tech.marksblogg.com/faster-python.html

52

batch elements. Thus, since this is done for every batch element, the number of

batch elements is being multiplied by the constant factor m with each recursive step.

However, CTPs save on expensive copying operations by not copying the batches

of fact and constant embeddings as well. Instead, they use the fact that for each

reformulator, if there are b current batch elements and m sub-goals being expanded to,

then there are bm sub-goals in the new batch. Due to how sub-goals are positioned in

the batch, a new batch sub-goal with index = i corresponds to the fact and constant

embeddings with indices = i mod b
m

. This does not work for RL-CTPs, as each

reformulator is only expanding upon some subset of the batch elements, meaning

that the number of sub-goals in the new batch will no longer be exactly bm, but will

depend on how many sub-goals the reformulator was selected for.

5.2.2 Outline of Solution

To solve the above-described issue, the method begins by copying batch elements of

the fact and constant embeddings to ensure they match up to the corresponding sub-

goals. Then, the method calls to the selection module to get a list of reformulators

to use for each sub-goal in the batch. For each reformulator i, it creates a new batch

of sub-goals, fact embeddings, and constant embeddings. It does this by including

every batch element for which the selection module returned a list of reformulators

containing i. This is implemented by iterating over every element of the full batch,

including the selected elements in the new constructed batch. The sub-goals of the

new batch are then passed through the reformulator to expand them into new sub-

goals, with the rest of the CTP operations proceeding as normal. A summary of this

process is presented in Algorithm 8.

5.2.3 Speed

While an improvement upon the naive recursive solution, this method was still un-

reasonably slow. Each training epoch took around 8 hours and it took 3.5 hours

to evaluate on 1.10 test. This is partially due to the expensive copying operations

that needed to be performed but has more to do with how the new batches for each

reformulator were constructed. Along with most modern machine learning libraries,

PyTorch (Paszke et al., 2019) is optimized to execute tensor operations, such as mul-

tiplication, in parallel on powerful GPUs. Iterating through a tensor and performing

operations on each element is not a process that GPUs excel at, and the loss in speed

we experienced is largely attributed to it.

53

Algorithm 8: Iterative RL-CTPs

S is a batch of sub-goals, F is a batch of fact embeddings, and C is a batch
of constant embeddings. copy(F,m) produces a sequence of m copies of F .

def expand(S, F, C)
if |S| > |F | then

/* Ensure matching batch elements */

m := |S|
|F |

F := copy(F,m)
C := copy(C,m)

end

selected reformulators = selection module(S) /* Selected

reformulators for each sub-goal in the batch */

for each reformulator ri do
Si, Fi, Ci := [] /* Include the batch elements of the arguments

for which this reformulator was selected */

for j ∈ {0, 1, ..., |S| − 1} do
if ri ∈ selected reformulators[j] then

Include S[j] in Si
Include F [j] in Fi
Include C[j] in Ci

end

end

Snew := ri(Si)
Then carry on with new sub-goals Snew

end

end

54

We attempted to move the entire model off the GPU and onto the CPU, but

doing so did not result in any significant speedup. This is because machine learning

algorithms are so well suited to being trained in batches on graphics cards, that it is

almost impossible to achieve comparable speeds using a CPU, even if the code is well

optimized. This is a well-known phenomenon that is noted in many works, including

by Steinkraus et al. (2005); Raina et al. (2009); Baldini et al. (2014); Schlegel (2015);

Efthymiou et al. (2019). Thus, any feasible solution will have to be implemented

using tensor operations that can be performed efficiently on the GPU.

5.3 Reformulator Subsets

This section does not outline an actual solution we attempted. Rather, it serves to

provide motivation as to why the solution described in Section 5.4 might produce

promising results, as well as give insight into the inner workings of CTPs. We present

an analysis of the strengths of various subsets of reformulators after they have been

trained in a CTP model.

5.3.1 Relative Strengths of Reformulator Subsets

Since all reformulators have different random initializations, they all converge to

different local optima. Thus, it is clear that some reformulators will capture more

rules than others, and that some will learn a particular rule better than the others.

Moreover, certain subsets of reformulators are likely to contribute more to proofs than

others, with subsets of the reformulators that better cover the range of rules in the

knowledge base giving higher accuracies when used for evaluation. We demonstrate

this empirically in Figure 5.1, where we train 5 reformulators across 10 different seeds

and then use 4 random subsets of 3 reformulators each for evaluation. The accuracies

of the highest and lowest scoring subsets are shown. This is demonstrated similarly

for 8 reformulators.

We see that there is consistently a large discrepancy between the performance

of different subsets, indicating that when it comes to maximizing accuracy during

evaluation, there are reformulators whose inclusion in the model is far more important

than that of other reformulators.

5.3.2 Average Reformulator Strength

We also present the following hypothesis: as the number of reformulators increases,

individual reformulators become weaker. To put this more formally: as we use more

55

Figure 5.1: CTP maximum and minimum accuracy on 1.4 test when 5 or 8 reformu-
lators are trained, evaluating using 4 random subsets of 3 reformulators each. Results
shown across 10 seeds

56

Figure 5.2: CTP accuracy across all datasets, using 5 and 8 reformulators during
training, evaluating using 4 random subsets of 3 reformulators each

reformulators during training, the expected accuracy when using a fixed-size subset

of the reformulators during evaluation decreases. This is an important hypothesis to

note and prove, as it means that the task of selecting the best reformulators for a

proof becomes harder as the total number of reformulators increases.

This hypothesis is supported empirically by the results in Figure 5.2. We trained

CTP models with 5 and 8 reformulators respectively, reporting the average accuracy

when 4 random subsets of 3 reformulators were used for evaluation. The results clearly

show that for every dataset, expected accuracy when using subsets of 3 reformulators

is higher when fewer reformulators are trained. This holds despite the fact that, as

demonstrated previously in Section 3.1.2, using more reformulators tends to increase

the accuracy of the model. We attribute this to the idea that having more reformu-

lators leads to them relying on each other while learning, meaning that an individual

reformulator may not need to learn a rule that it is able to, as another reformulator

has already learnt to capture that rule. This makes individual reformulators weaker.

5.3.3 Maximizing Subset Performance

To get an indication for how well subsets of reformulators can perform when the

optimal subsets are selected, we propose the following method. Following the training

57

Figure 5.3: Comparison across all datasets of accuracy achieved using SubsetMax with
5 reformulators, SubsetMax with 8 reformulators, and CTPs with 3 reformulators.
Hyperparameters tuned on 1.3 test and 1.9 test

58

procedure described in Algorithm 5, we use 4 random subsets of 3 reformulators,

selecting the subset that maximizes the accuracy on the evaluation dataset. We

refer to this method as SubsetMax-n, where n is the number of reformulators used

during training. In Figure 5.3, we compare SubsetMax-5 and SubsetMax-8 to CTPs

in which 3 reformulators were used, which we refer to as CTP-3. The CTP model

was optimized in the same way: using the process described in Algorithm 5. While

not an exhaustive search over all possible reformulators subsets, this method at least

gives an indicator for the accuracy that the best performing subset of reformulators

can achieve.

We see that while CTP-3 outperformed both SubsetMax-5 and SubsetMax-8

across all datasets, SubsetMax-5 achieved at least competitive accuracies in some

cases. As expected from our analysis in the preceding section, SubsetMax-5 outper-

formed SubsetMax-8 across all datasets, due to individual reformulators being weaker

when more reformulators are used. The results indicate that the best performing

subset of reformulators may have comparable performance to baseline CTPs. Thus,

instead of trying every possible subset of n reformulators (of which there are 2n), we

propose a method whereby we use RL-CTPs to learn which reformulators perform

the best. This method draws inspiration from the work of Li et al. (2020), in that our

CTP model is “trained large” by training more reformulators than needed, and then

“compressed” by trying to learn the best performing subset of reformulators, using

them for evaluation.

5.4 First Batch Element Approximation

5.4.1 Outline of Solution

To learn which reformulators perform best overall, we implement RL-CTPs by con-

ditioning them on only the first sub-goal of the batch. The decision as to which

reformulators to use is then applied to every element in the batch, with the resulting

proof scores being used to update the policy estimator. This means that the selection

module performs optimally when it learns to select reformulators that maximize the

proof scores across all batch elements. Being conditioned on the first sub-goal of

the batch allows this method to scale well to datasets and situations where similar

examples are all batched together, since the reformulators selected for expanding one

sub-goal will likely perform well on the others as well. However, this is not the case

for the CLUTRR datasets used in this thesis. The method is illustrated in Algorithm

9.

59

Algorithm 9: FirstBatch RL-CTPs

S is a batch of sub-goals.

def expand(S)
selected reformulators = selection module(S[0]) /* Condition the

selection module on only the first sub-goal in the batch */

for each reformulator ri ∈ selected reformulators do
Snew := ri(S)
Then carry on with new sub-goals Snew

end

end

This method solves the issue of individual batch elements needing different re-

formulators applied to them, as the same set of reformulators is applied to every

sub-goal in the batch. This means that there is no need for expensive tensor copy-

ing operations or iteration over the batch elements, which solves the computational

issues encountered in the iterative and recursive methods. We refer to the method

as FirstBatch-nCk, where n reformulators are trained and k are selected for expan-

sion. The full list of hyperparameters used to evaluate the method can be found in

Appendix A.4.

5.4.2 Speedup

As shown in Figure 5.4, FirstBatch-8C3 models are significantly faster than CTPs

with 8 reformulators, as they only use 3 reformulators for evaluation. They are

however slightly slower than CTPs with 3 reformulators, due to the overhead that

comes from the selection module. These results show promise for any implementation

of RL-CTPs that does not have too much overhead when it comes to integrating the

selection module.

5.4.3 Results

Accuracy results across all datasets are shown for FirstBatch-8C3 in Figure 5.5 and

for FirstBatch-8C2 in Figure 5.6. We compare FirstBatch-8C3 to both the average

accuracy when a subset of 3 reformulators is used and the CTP-3 baseline, whereas

we only compare FirstBatch-8C2 to the CTP-2 baseline. The fact that FirstBatch-

8C3 consistently and significantly outperforms the average accuracy when using a

60

Figure 5.4: Comparison across all datasets of evaluation time when using CTPs
with 3 reformulators, CTPs with 8 reformulators, and the FirstBatch method with 8
choosing 3 reformulators

subset of 3 reformulators indicates that, at the very least, FirstBatch is learning

which reformulators are better than others.

Overall, the baseline of CTP-3 outperforms FirstBatch in every scenario, ex-

cept for when tuning hyperparameters on 1.9 test, where FirstBatch-8C3 achieves

a slightly higher accuracy on 1.3 test. This is technically a success for the model, but

taking into account how much better the baseline performed in every other scenario,

we conclude that the FirstBatch method has failed to improve upon the baseline, and

that we can expect it to often perform significantly worse. However, this does not

completely invalidate the usefulness of the model in all scenarios, since as we have

already noted, we can expect it to perform better in cases where similar examples

have all been batched together. Further improvements upon the architecture of the

selection module itself could also help lessen the gap in accuracy between the baseline

and FirstBatch.

Comparing between FirstBatch-8C3 and FirstBatch-8C2, FirstBatch-8C3 achieves

significantly higher accuracy in every single case. This is to be expected though, as

including more reformulators during evaluation will never bring down the accuracy

of the model. More interesting to note is that the discrepancy in performance be-

tween CTPs and FirstBatch is far larger when 2 reformulators are used than when 3

61

Figure 5.5: Comparison across all datasets of accuracy achieved using random subsets
of size 3 of 8 reformulators, the FirstBatch method with 8 choosing 3 reformulators,
and CTPs with 3 reformulators. Hyperparameters tuned on 1.3 test and 1.9 test

62

Figure 5.6: Comparison across all datasets of accuracy achieved using the FirstBatch
method with 8 choosing 2 reformulators, and CTPs with 2 reformulators. Hyperpa-
rameters tuned on 1.3 test and 1.9 test

63

reformulators are used. For example, when considering evaluating on 1.9 test after

tuning hyperparameters on 1.3 test, FirstBatch-8C3 gives 11% less accuracy (a ratio

of 0.84:1) than the baseline, whereas FirstBatch-8C2 gives 31% less accuracy (a ratio

of 0.49:1). This seems to imply that the rate at which the selection task becomes

harder as fewer reformulators are selected is greater than the rate at which CTP

performance drops from using fewer reformulators. However, we conjecture that for

higher values of n and k, this performance gap will shrink and may no longer even

present itself.

As a final observation, we see that overall, the performance of FirstBatch models

appears less sensitive to which evaluation set is used than that of CTP models. This

can be interpreted as both a bad and a good phenomenon. CTPs perform better

for more complex test datasets when they are tuned on a more complex evaluation

dataset, since they learn rules that will be more useful when applied to more difficult

tasks. FirstBatch not demonstrating this to the same extent could indicate that it

is not learning to prefer such rules, even when tuned on the datasets that require

them. However, it could also be a good sign that FirstBatch is generalizing more, as

its performance does not deviate much when tuned on different evaluation datasets.

64

Chapter 6

Tensor Operations Solution

In this chapter, we describe in detail the final implementation of RL-CTPs that

we attempted. This implementation is the culmination of all the work discussed in

Chapter 5. We begin by providing a technical description of how the implementation

was done, outlining where in the CTP code the method was integrated, how the

selection module was implemented, our solution for creating subsets of the batch to

be operated on by reformulators, and how rewards were collected for updating the

policy estimator. We then briefly describe how the model was optimized during the

development process and during evaluation. Next, we present all the results pertinent

to the model, comparing it to the baseline of CTPs while considering different values

of n and k: the number of reformulators trained and number used during evaluation

respectively. We also provide a test of statistical significance for the most promising

results and show the wall-clock speedup that the model exhibits. We conclude the

chapter by discussing aspects of the model that are still lacking and how they could

be improved upon.

6.1 Technicalities of Solution

We provide a technical description of how RL-CTPs were implemented in code, using

our final implementation. We refer to such models as TensorOp-nCk, in a similar

manner to how FirstBatch models were expressed. While the underlying principles of

how the code works are the same as the theoretical description, we have to adapt our

language slightly to give a rigorous description of the implementation. In particular,

all representations of predicates and constants are stored in PyTorch tensors, which

are manipulated by the neural networks that represent reformulators. Furthermore,

instead of having two functions and and or that define the expansion of CTPs upon a

goal, the code has two methods: depth r score and depth r forward. Each of these

65

encompasses the logic of both the and and or functions, with the former being used

specifically for ground sub-goals, and the latter for sub-goals containing variables.

They are recursively applied up to the reasoning depth, at which point the model

calls to an entirely separate module to unify the sub-goals with the knowledge base.

The depth r score method begins by checking if it has reached the reasoning

depth. If it has not, it then iterates through the reformulators. Each reformulator is

applied to all the sub-goals in the batch, generating a batch of lists of new sub-goals.

For each list of sub-goals in the batch, proof scores are recursively calculated, with

the minimum scores from each list being stored as the proof scores for the sub-goals

that were expanded upon. The model maximizes these scores across all reformulators.

They are then returned as the proof scores for each sub-goal in the batch originally

passed to the depth r score method. The depth r forward method operates in the

exact same manner, but also handles substitutions by manipulating the positions of

variables in the sub-goals.

6.1.1 Points of Integration

The first place where new code was needed was in the main training routine of CTPs.

Instead of just training the reformulators and then evaluating, the reformulators are

trained for a given number of epochs, then the selection module is activated and

training continues for another given number of epochs. Training is done on the same

dataset and with the same batch size. During this second round of training, the

reformulators and predicate/constant embeddings are no longer updated. Evaluation

happens after this round of training is complete, with the selection module still active.

Next, logic was added to the CTP model to use the selection module if it is

active, and to otherwise proceed with the normal CTP operations. We describe

only how the depth r score method needs modifications, as the changes required

to depth r forward are very similar. After the depth limit check in depth r score,

the model now needs to match the batch sizes of the arguments. Specifically, the

batch elements of predicate/constant embeddings and lists of facts need to be copied,

a fixed scaling factor number of times, to match up with their corresponding batch

elements of sub-goals. Recall that this happens due to how the new m sub-goals for

each batch element are arranged in the new batch that is created by a reformulator

application. Thus, the scaling factor is calculated dynamically, to allow for the model

to work for different values of m.

Following this scaling, the batch of sub-goals is passed through to the selection

module to get a list of reformulators to use for each sub-goal. This is returned as a

66

batch of lists of indices, where i being included in the list of the jth element of the

batch means that reformulator i should be applied to batch sub-goal j. A sub-goal is

represented by concatenating the representations of the predicate and two constants.

If either of the constants are variables instead, they are represented by the zero tensor

when passed to the selection module. Also returned by the selection module is a count

of how many times each reformulator was selected. The method then continues by

iterating over each reformulator.

A reformulator is skipped if the count of the number of times it was selected

is zero. Otherwise, new tensors are constructed for the batches of sub-goals, pred-

icate/constant embeddings, and lists of facts. The elements of these tensors are

selected from the original tensors of the arguments passed to the depth r score

method, using the reformulator lists returned by the selection module. This means we

now have tensors containing batch elements of each of the arguments of the method,

but only the batch elements that this particular reformulator ought to be applied to.

The process used to achieve this is described in Section 6.1.3.

The method otherwise proceeds as normal, albeit that every instance where the

method has a reference to the batch size is replaced with a reference to the count

of how many times the current reformulator being considered was selected. This is

because the latter is the actual number of batch elements the reformulator is now

being applied to. At the end of the method, proof scores are collected to be used for

calculating rewards, as described in Section 6.1.4. For maximizing the proof score

across reformulators, proof scores of zero are added in for each reformulator when it

was not selected for a particular batch element. The adaptions to the method are

summarized in Algorithm 11.

6.1.2 Selection Module

The selection module is implemented by a class, an instance of which is instantiated

while the rest of the CTP model is also being set up. It allows the model designer to

specify the number of reformulators n, the number of reformulators to be selected k,

the embedding size of the model, and the learning rate of the optimizer. These param-

eters are used to initialize the policy estimator, which contains a single hidden layer of

30 neurons, a ReLU activation function, and a log softmax function after the output

layer. Two main methods control its operation: get actions and apply reward.

The get actions method is given a batch of states as an argument, which is

passed to the policy estimator, the output of which is exponentiated to get a batch

of probability distributions over the reformulators. This is then moved to the CPU

67

Algorithm 10: RL-CTP selection module

S is a batch of states, A is a batch of actions, and R a batch of rewards. π
denotes the policy estimator and k is the number of reformulators the
module ought to select. sample with replacement(S, p, k) draws k samples
from S with replacement, using the probability distribution p.

def get actions(S)
P := eπ(S) /* A batch of probability distributions */

selected reformulators = []
reformulator counts = []

for each probability distribution p ∈ P do
indices = []
if n positive entries(p) < k then

indices = indices of the positive entries in p
else

indices = sample with replacement({0, ..., n− 1}, p, k)
end

selected reformulators.append(indices)
update reformulator counts using indices

end

return selected reformulators, reformulator counts

end

def apply reward(S,A,R)
L := get loss(S,A,R)
optimizer.apply loss(L, retain graph = True)

end

68

so that the batch may be iterated over and have its distributions sampled from. For

each probability distribution in the batch, k samples are drawn without replacement,

creating a list of reformulator indices to use for each state in the batch. If the number

of positive entries in a distribution is some k′ < k, then all of the k′ reformulator

indices are deterministically chosen. At the same time, the method constructs a

count of the number of times each reformulator was selected. This and the list of

reformulators chosen for each batch element are returned from the method.

The apply reward method is used to update the policy estimator with the reward

signal received from taking the actions. It is passed a batch of states (sub-goal

representations), a batch of actions (reformulator indices), and a batch of rewards

(calculated from proof scores). These are used to calculate the loss, as described in

Section 4.2.3. The loss is then applied to update the model, using the PyTorch Adam

optimizer. When backpropagating the loss, we had to set the retain graph flag1 to

True. Normally, once a tensor is used to calculate loss, the computation graph used to

compute the loss will be freed. However, this cannot be done in our case, because the

reward tensors are being taken from the proof scores, some of which will be used again

for calculating loss further up in the model. A summary of the module is provided in

Algorithm 10.

6.1.3 Tensor Masking

We now describe how subsets of batch elements were formed into new tensors, so

that the selected reformulators could be applied to them. This was attempted in our

Iterative method, as described in Section 5.2, by iterating over the elements of the

batch. For this implementation, to avoid the slow-down that came from iterating over

tensors stored on the GPU, we used PyTorch tensor operations.

First, the reinforce module is used to get a list of reformulators to use for each

batch element, represented by a tensor of the shape [B, k], where B is the number

of elements in the batch. Each number in the tensor is a reformulator index. Note

that sub-tensors along dimension 1 may contain fewer than k elements if the policy

estimator produced fewer than k positive entries in the corresponding probability

distributions. Then, for each reformulator i, this tensor is used to construct a selection

mask. This is best shown by example; consider the following tensor returned by the

selection module:

1https://pytorch.org/docs/stable/generated/torch.Tensor.backward.html

69

A =

[
0 1
2 1

]
This represents that for the first batch element, reformulators 0 and 1 were se-

lected, and that for the second batch element, reformulators 2 and 1 were selected. Let

us assume that we are currently constructing new batches for reformulator i := 1 to

be applied to. We then compare A to the index of the current reformulator: A == 1,

giving a new tensor consisting of True/False values. In this case, it produces:

(A == i) =

[
False True
False True

]
We then calculate the maximum values across dimension 1 of the tensor (shown

above as left to right), understanding that True is assigned a value of 1 and False a

value of 0 in Python. This maximization represents including a reformulator if it was

listed at all. It yields a new tensor:

maxdim=1(A == i) =
[
True True

]
This final tensor, the selection mask, specifies whether or not reformulator i should

be used for each element of the batch. In this particular case, it states that refor-

mulator 1 should be used for both batch elements. PyTorch allows such tensors to

be used for constructing a new tensor from another, by using indexing. The way in

which the new batch is computed for reformulator i to be applied to is thus:

new batch := batch[maxdim=1(A == i)]

6.1.4 Collecting Rewards

At the end of the application of a reformulator i, rewards need to be collected and

applied to the selection module through the apply reward method. The selected

batch of states (sub-goals) is constructed by applying the selection mask to the full

batch of states. The batch of actions is constructed by initializing a tensor consisting

only of the number i, repeated the number of times for which the reformulator was

chosen. The batch of rewards is exactly the proof scores that arose from the applica-

tion of the reformulator to each element in the selected batch. The full summarized

depth r score method can be seen in Algorithm 11.

Since each reformulator is applied in sequence, the selection module will be trained

on batches that consist only of a single action applied to different sub-goals. This

70

Algorithm 11: TensorOp RL-CTPs

S is a batch of sub-goals, F is a batch of fact embeddings, and C is a batch
of constant embeddings. copy(F,m) produces a sequence of m copies of F .

def depth r score(S, F, C)
if |S| > |F | then

/* Ensure matching batch elements */

m := |S|
|F |

F := copy(F,m)
C := copy(C,m)

end

(A, reformulator counts) := selection module.get actions(S)
/* Selected reformulators for each sub-goal in the batch */

for each reformulator ri do
mask := maxdim=1(A == i)
Si, Fi, Ci := S[mask], F [mask], C[mask] /* Include the batch

elements for which this reformulator was selected */

Snew := ri(Si)
Then carry on with new sub-goals Snew

...

Ri := proof scores from Snew

Ai := [i].repeat(reformulator counts[i])
selection module.apply reward(Si, Ai, Ri)

end

end

71

is different from the standard implementation of REINFORCE, where the batch of

actions is determined from how the model ended up choosing them in an episode and

will likely contain several different actions. However, in theory, the way in which

we implemented it should still work, as REINFORCE still trains even if the model

happens to select the same action many times in a row. Our one concern was that

the model would tend to prefer reformulators with lower indices, as they are always

the ones that apply rewards first. However, we hypothesize that this effect is too

small to make any kind of significant difference and note that we did not see such

preferences manifesting themselves during experiments. Therefore, we chose not to

address this with a solution such as collecting the rewards from all reformulators

and then scrambling the order before applying them, as doing so would add needless

computation time.

6.2 Model Optimization

The selection module was implemented and optimized initially during development.

This was done to avoid having to do a hyperparameter grid search on too many

different parameters, as there are exponentially more configurations to try as the

number of parameters increases. Thus, the only hyperparameters of RL-CTPs that

we allowed to vary were the learning rate, the number of reformulators used, the

number of reformulators selected, and the seed. This meant that the rest of the

selection module architecture needed to be fixed.

During the development process, we started with 16 neurons in the hidden layer

of the policy estimator, increasing it to 30 once we realized that 16 may not provide

enough model capacity to solve the task. We conjecture that the optimal number may

be even higher, but more computing power is needed to test and optimize this. We

also switched from using a sigmoid activation function to ReLU, since ReLU appears

to be more prevalent in similar works and is also known to be faster (Si et al., 2018).

Finally, we started by training the selection module over 10 epochs, but lowered it

to 3 after we noticed that the model performance increased initially over the first

few epochs, but then dropped significantly as the model became overconfident in

its predictions, often only choosing a single reformulator despite it being allowed to

choose several.

We did initial evaluations on larger ranges of learning rates, from 0.01 to 0.2,

narrowing it down to 2 learning rates each for our chosen classes of RL-CTP models:

those trained with 5 reformulators and those trained with 8. These learning rates are

72

Figure 6.1: Comparison across all datasets of evaluation time when using CTPs with 3
reformulators, CTPs with 8 reformulators, and the TensorOp method with 8 choosing
3 reformulators

{0.001, 0.01} and {0.005, 0.01} respectively. The full list of hyperparameters used for

evaluating the TensorOp method can be seen in Appendix A.6. We chose to evaluate

RL-CTPs with n ∈ {5, 8} to measure their effectiveness when more (and individually

weaker) reformulators are used and with k ∈ {2, 3} to measure the effectiveness of

RL-CTPs when they are allowed to expand fewer proof paths. This yielded 4 different

scenarios for evaluation.

6.3 Results

6.3.1 Speedup

In Figure 6.1, we compare the evaluation times of RL-CTPs and baseline CTPs,

with RL-CTPs implemented by the TensorOp method and the baseline operating

on 3 and 8 reformulators respectively. As expected, the overhead caused by the

copying, masking, and other operations needed in the TensorOp method led to it

taking significantly longer to evaluate than CTP-3. However, the overhead was low

enough for TensorOp-8C3 to take less time to evaluate than CTP-8 across all datasets.

The effect becomes more pronounced as the complexity of the dataset increases, since

73

the number of facts in the knowledge base to unify the sub-goals with increases, which

has a significant effect on the computational complexity of the model.

As the dataset complexity continues to increase. the overhead will become more

negligible, leading the evaluation time of TensorOp-nCk models to tend to those of

CTP-k models. The increasing gap between the evaluation time of TensorOp-8C3

and CTP-8 in Figure 6.1 is a clear visual illustration of this trend. Datasets always

taking longer to evaluate on than others is explained by the size of the datasets. For

example, despite 1.6 test being a more complex dataset than 1.5 test, it only contains

104 tasks, compared to the 184 of 1.5 test.

6.3.2 Comparison to Baseline

We evaluate the TensorOp method when 5 and 8 reformulators have been trained,

with 2 and 3 reformulators being chosen. Recalling that TensorOp-nCk denotes a

TensorOp model trained with n reformulators, where k are chosen by the selection

module, we demonstrate the performance of TensorOp8C2 and TensorOp5C2 in Fig-

ure 6.2. We also show the performance of TensorOp8C3 and TensorOp5C3 in Figure

6.3. These models are evaluated by comparing them to their respective baselines:

CTP-2 and CTP-3. This yields 4 different scenarios in which RL-CTPs are evalu-

ated: 8 choosing 3, 8 choosing 2, 5 choosing 3, and 5 choosing 2 reformulators.

Let us first consider the results in Figure 6.3, which pertain to RL-CTPs that

choose 3 reformulators. We see that, when tuned on 1.3 test, TensorOp5C3 outper-

forms the baseline on every dataset except 1.2 test. These results demonstrate that,

at the very least, there are some scenarios in which RL-CTP models achieve higher

accuracies than computationally equivalent CTP models. We calculate the statistical

significance of these particular results in Section 6.3.3. When tuning the same models

on 1.9 test, RL-CTPs only outperform the baseline on the simpler datasets. We also

note that when tuned on 1.3 test, TensorOp8C3 outperforms the baseline on one of

the test datasets, but performs comparatively poorly on the rest. Out of the 4 sce-

narios in which we evaluate RL-CTPs, they only consistently outperform the baseline

in one.

As seen in Section 5.4, RL-CTPs implemented by the FirstBatch method perform

significantly worse when only 2 reformulators are chosen instead of 3. The same

effect is seen for TensorOp RL-CTPs in Figure 6.2: TensorOp models that only

choose 2 reformulators are outperformed by the baseline across every dataset. We

hypothesize that, for CLUTRR, the task of learning which two reformulators are the

most promising is one that is just too difficult for the model to find a solution to.

74

Figure 6.2: Comparison across all datasets of accuracy achieved using TensorOp with
8 choosing 2 reformulators, TensorOp with 5 choosing 2 reformulators, and CTPs
with 2 reformulators. Hyperparameters tuned on 1.3 test and 1.9 test

75

Figure 6.3: Comparison across all datasets of accuracy achieved using TensorOp with
8 choosing 3 reformulators, TensorOp with 5 choosing 3 reformulators, and CTPs
with 3 reformulators. Hyperparameters tuned on 1.3 test and 1.9 test

76

As shown in Section 5.3.2: as the number of reformulators increases, individual

reformulators become weaker. Thus, the task of choosing the optimal reformulators

for expansion becomes more difficult as the number of reformulators increases. This

means that, all else being constant, the accuracy of RL-CTP models will drop as more

reformulators are trained. This effect is offset by the increasing expressivity of the

model as more reformulators are used. Hence, as expected, RL-CTPs implemented

by the TensorOp method consistently perform worse when more reformulators are

trained. This is seen is both Figure 6.2 and Figure 6.3, where TensorOp5Ck models

outperform TensorOp8Ck models in every scenario and across every dataset.

Finally, we note that tuning hyperparameters on 1.9 test instead of 1.3 test causes

baseline CTP performance to decrease for the simpler datasets but increase for the

more complex datasets. For RL-CTPs however, this effect appears far less pro-

nounced, with the accuracy of TensorOp5C3 models even dropping slightly for the

more complex test datasets, when tuning on 1.9 test instead of 1.3 test. This in-

dicates that RL-CTPs are not learning the reasoning patterns needed for the more

complex datasets, even when tuned on such a dataset. It is also possible that RL-

CTPs could be overfitting to the evaluation set when tuned on 1.9 test. However,

since the accuracy of RL-CTPs on 1.9 test does not even increase that much when

tuning on the dataset, we find the former explanation to be more likely.

6.3.3 Statistical Significance

We present a test of statistical significance for the results obtained in the one scenario

where RL-CTPs outperformed CTPs. The test compares CTPs and RL-CTPs, where

RL-CTPs are implemented by TensorOp5C3, CTPs use 3 reformulators, and hyper-

parameters are tuned on 1.3 test. A separate one-tailed unpaired t-test (Mann, 2007)

is performed between the two methods for each dataset. The respective means, stan-

dard deviations, and resulting p-values are shown in Figure 6.4. Each population has

a sample size of 5, since that is the number of tests that were run for each method, as

specified in Algorithm 5. The null hypothesis of each test is that CTPs and RL-CTPs

achieve the same accuracy, and the alternative hypothesis is that RL-CTPs achieve

a higher accuracy.

Adopting a standard significance level of 0.05 (Fisher, 1992), we reject the null

hypothesis on the datasets of 1.4 test, 1.6 test, and 1.7 test. Significant results were

not achieved for the other datasets, as despite RL-CTPs outperforming CTPs on every

dataset except 1.2 test, relatively high variance was experienced in the results. This

is attributed to the limited computational resources we had access to for this thesis,

77

CTP RL-CTP

µ ± σ µ ± σ One-Tailed P-Value

1.2 test 80.00 24.49 78.95 25.84 0.525

1.3 test 90.65 7.24 94.58 1.09 0.147

1.4 test 76.10 4.97 81.82 4.57 0.048

1.5 test 87.03 3.31 89.73 5.34 0.185

1.6 test 83.81 3.41 89.52 4.82 0.033

1.7 test 78.71 1.82 86.06 5.01 0.014

1.8 test 73.93 5.20 78.82 6.50 0.114

1.9 test 68.87 7.58 73.87 5.94 0.140

1.10 test 67.05 4.96 69.67 6.43 0.246

Figure 6.4: One-tailed unpaired t-test between the baseline of CTPs with 3 refor-
mulators and RL-CTPs implemented by TensorOp with 5 choosing 3 reformulators.
Hyperparameters tuned on 1.3 test

as the higher the number of times the evaluation procedure is run, the more confident

the results become. The variance experienced on 1.2 test is an outlier among the

datasets; all methods that operated on the dataset demonstrated a high variance in

their results.

As a final point, we note that RL-CTPs do not appear to exhibit higher insta-

bility in their accuracies than CTPs, with the models showing comparable levels of

variance. This is a good sign for RL-CTPs, as models that have higher variance in

their performance are riskier to use, even if they achieve higher accuracies on average.

6.4 Further Improvements

In this section, we discuss some of the issues with RL-CTPs, their possible solutions,

and other ways one could improve upon the model. These improvements were con-

sidered but ultimately not implemented due to them being beyond the scope of this

thesis. We leave them for future work.

78

6.4.1 Negative Examples

As already noted in Section 4.2.4, we train the selection module of RL-CTPs to

maximize the proof score across all tasks, not just positive tasks. This is problematic,

since the target proof score of a negative task is zero. This did not appear to cause

significant issues with model performance, but ideally this problem should be dealt

with anyway. We present two possible solutions. The first is to only use positive tasks

during the training of the selection module. The second is to assign the negative of

the proof score as a reward for the model, whenever it is trained on a negative task.

However, the latter suggestion leads to some strange concepts arising around the

behaviour of the selection module. We are essentially telling the model that when

the goal does not hold true, it should try select the proof path that does the worst

job at proving it, rather than trusting that there are no proof paths that will yield a

satisfactory proof score.

As such, we suggest the first solution as an improvement to be made in future

work, which can be implemented by doing pre-processing on the dataset to remove

all negative examples before the selection module is trained.

6.4.2 Variables

The policy estimator in RL-CTPs needs tensors to operate upon, so there remains

the open question of how to deal with variables in a sub-goal. The approach we took

was to fix the representation of any variable to be the tensor consisting of all zeroes.

However, there are perhaps more sophisticated ways of addressing this problem. The

first is to condition only upon the predicate of the sub-goal, eliminating the need to

consider the variables and constants at all. However, reformulators already operate

on only the predicate, meaning that in theory, they should already capture all the

different ways the predicate could be expanded upon. Without the extra context of

the constants and variables, the selection module cannot possibly know which proof

path is the most promising, and simply has to learn which reformulators are generally

better than others. Thus, this is a poor solution.

Another option is to add an extra 4 inputs to the policy estimator, which can

be used for one-hot encodings, to tell the selection model whether it has received

a sub-goal of the form p(c1, c2), p(X, c2), p(c1, X), or p(X, Y). Alternatively, there

could be a separate selection module used for each of these cases. Finally, one could

also try learn a representation for variables, instead of fixing it to be the zero tensor.

This representation could be optimized jointly with the rest of the selection module.

79

6.4.3 Entropy Regularization

RL-CTPs have to be trained for very few epochs to prevent them from becoming

overconfident as they train. To solve this, we can encourage the model to choose

diverse distributions of reformulators during training using entropy regularization, a

method proposed by Mnih et al. (2016). With entropy regularization, the diversity of

the model predictions is used when calculating the loss. The following term is added

to the loss function, where β is a hyperparameter used to scale the regularization:

H(X) = −β
∑
x

π(x) log(π(x))

This technique has been used by Neu et al. (2017); Nachum et al. (2017); Xiong

et al. (2017); Das et al. (2018); Haarnoja et al. (2018) to great effect, and we suspect it

to be the change to the model that, if implemented, would yield the greatest increase

in performance. This is because we see that over time, even the best-performing mod-

els tend to towards choosing specific subsets of reformulators, meaning that training

needs to be stopped before they overly fixate on them. With entropy regularization,

the model could be trained for longer and across more diverse selections, learning

patterns that it would otherwise not be able to.

6.4.4 REINFORCE with Baseline

One of the issues with policy gradient methods is the high variance they experience

due to the diverse rewards earned during exploration. A common way to address

this is to use Policy Gradient with Baseline (Evans & Swartz, 2000; Fishman, 2013;

Hammersley, 2013). A baseline scoring function is introduced into the model, to be

used as a proxy for the expected actual return. Before the reward is applied, the

baseline is subtracted from it. The value function itself can be used for the baseline,

or a learned baseline could be introduced, where another separate model is used to

approximate the expected return.

6.4.5 Training Modules in Parallel

In the initial stages of developing RL-CTPs, we trained the reformulators and the

selection module in parallel. However, we abandoned this training routine due to

the poor performance we experienced: the selection module would choose only a few

reformulators that continued to improve as they were trained, leading to the selection

module choosing them more frequently. This feedback loop led to only a small subset

80

of reformulators being properly trained, with the selection module always choosing

them. We have already noted that this seems to defeat the point of using RL-CTPs.

However, there is a potential use case for this.

One of the current open problems in the CTP framework is how to induce the

rule structures. The structures of the reformulators define the types of rules they can

capture, so this prior knowledge about the data is needed to learn the rules. With

this in mind, we propose the following process for learning rule structures. Initialize

many different reformulators, several for each type of rule structure that one believes

could hold in the knowledge base. Use a selection module similar to the FirstBatch

implementation, but not conditioned upon the sub-goals, so that it purely tries to

learn which reformulator subsets are the best. Include entropy regularization in the

model and increase the value of the hyperparameter that controls the regularization

for the early training epochs, to encourage even more diversity during initial training.

Fix some value of k for the selection module which is as high as the evaluation

time constraints allow for. Then, the model should tend towards learning which

reformulators, and thus which rule structures, best capture the rules in the knowledge

base.

The problem of the feedback loop between the selection module and reformulator

performance can be solved by a suitable tuning of the entropy regularization, and the

issue of some reformulators being chosen more than others during training becomes

a feature of the model. This is because reformulators that better capture the rules

in the knowledge base will yield higher rewards over time and be preferred by the

selection module.

6.4.6 Conditioning Upon More

In the current model of RL-CTPs, we condition the policy estimator upon only the

current sub-goal being considered for expansion. However, the model may benefit

from having more information about the current state of the proof path, such as

how many reasoning steps are left before unification, the main goal to be proved,

the reformulators used for expansion to reach this point in the proof path, and the

other existing sub-goals. Providing the selection module with this extra context could

allow it to make predictions about the success of different proof paths that it could not

before. Das et al. (2018) parameterize their policy estimator in MINERVA with the

entire history of reasoning steps taken. They use a long short-term memory network

(Hochreiter & Schmidhuber, 1997) to implement this. A similar approach could be

used to allow RL-CTPs to condition upon the other parameters described above.

81

Chapter 7

Conclusion

In this thesis, we provided motivation for cases in which CTP models would be

required to have a large number of reformulators and a high reasoning depth, as

well as demonstrating how this leads to computational complexity concerns both

theoretically and empirically. We defined a framework for RL-CTPs as an extension to

CTPs, in which reinforcement learning is used to learn to select optimal reformulators

for expansion during a proof. This allows the model designer to scale down the number

of selected reformulators, such that the computational constraints of the use case

may be met. Specifically, we defined a model architecture based on REINFORCE, a

policy gradient method. We outlined our various failed attempts to implement this

architecture, giving insight as to why they failed, as well as the inner workings of

CTPs. Most importantly, we noted that certain subsets of reformulators perform

significantly better than others, and that individual reformulators tend to become

weaker as the number of reformulators used in a CTP model increases. This means

that the task of selecting reformulators becomes more difficult as the number of

reformulators increases.

We also gave an outline of our successful implementation of RL-CTPs, which we

refer to as the TensorOp method. We evaluated the model in 4 separate scenarios,

which vary in regard to the number of reformulators trained and the number of refor-

mulators selected. In 1 of these 4 scenarios, we found that RL-CTPs outperformed

CTPs on 8 out of 9 test datasets. However, due to high variance in accuracies from

limited testing (as we lacked computational power), statistically significant results

were only achieved for 3 of the datasets. In the remainder of the scenarios, RL-CTPs

failed to outperform the baseline CTP models. The results demonstrate the useful-

ness of RL-CTPs over CTPs in certain situations, but also highlight their failing to

be a categorical improvement upon CTPs. Overall, we identify that the framework

has shown its potential, but is not especially useful in its current form.

82

This research opens several promising avenues for future work. The remaining

problems we identified in the RL-CTP architecture provide a particularly fruitful

place to start. In Section 6.4, we discussed in detail several issues we perceived in

the model and outlined our proposed solutions to these problems. Specifically, we

suggested how the model could handle negative examples, deal better with variables

appearing in sub-goals, avoid overconfidence during training by incorporating entropy

regularization into the loss function, decrease the variance by using Policy Gradient

with Baseline, train the reformulators and selection module in parallel, and condition

the selection module upon more data. From among these, we identify entropy reg-

ularization as the improvement that would yield the greatest immediate increase in

the performance of the model.

Overall, but independent to the aims of this thesis, the greatest remaining weak-

ness of CTPs is their inability to induce the structures of the rules that they learn.

The rule structures have to be specified before training and are built into the struc-

tures of the reformulators. The need for this prior knowledge greatly inhibits the

application of CTPs to datasets where the structure of rules is not known up front.

To address this, CTPs should be able to induce the structures of the rules during

training. Besides providing an outline in Section 6.4.5 as to how one might approach

this using an implementation of RL-CTPs, we leave this for future work.

83

Appendix A

Model Hyperparameters

In this appendix, we provide the hyperparameters used for each of our evaluations.

A.1 Fixed CTP Hyperparameters

Name Value

batch-size 16

embedding-size 50

epochs 20

evaluate-every 100

init random

init-size 1

k-max 5

learning-rate 0.1

max-depth 2

nb-rules 512

optimizer adagrad

ref-init random

reformulator attentive

scoring-type concat

slope 1

test ALL TEST DATASETS

test-batch-size 1

tnorm min

train data/clutrr-emnlp/data db9b8f04/1.2,1.3,1.4 train.csv

84

A.2 Number of Reformulators

Name Values

hops 1-8 reformulators, each with 2 atoms in the body. For
example, 4 reformulators is denoted by: “2 2 2 2”

seed 1-30

test-max-depth 4

A.3 Reasoning Depth

Name Values

hops 5 reformulators, each with 2 atoms in the body, denoted
by: “2 2 2 2 2”

seed 1-3

test-max-depth 1-5

A.4 First Batch Element Approximation

Name Values

hops 8 reformulators, each with 2 atoms in the body, denoted
by: “2 2 2 2 2 2 2 2”

seed 1-20

test-max-depth 4

rl-actions-selected 2, 3

rl-epochs 3

rl-learning-rate 0.005, 0.01

85

A.5 Reformulators Subsets

Name Values

hops 5, 8 reformulators, each with 2 atoms in the body, de-
noted by: “2 2 2 2 2” and “2 2 2 2 2 2 2 2” respectively

seed 1-10

test-max-depth 4

subset Use reformulators with the following indices for evalua-
tion: { [0 1 2], [2 3 4], [0 3 4], [1 2 4] }

A.6 RL with Tensor Operations

A.6.1 5 Reformulators

Name Values

hops 5 reformulators, each with 2 atoms in the body, denoted
by: “2 2 2 2 2”

seed 1-30

test-max-depth 4

rl-actions-selected 2, 3

rl-epochs 3

rl-learning-rate 0.001, 0.01

A.6.2 8 Reformulators

Name Values

hops 8 reformulators, each with 2 atoms in the body, denoted
by: “2 2 2 2 2 2 2 2”

seed 1-30

test-max-depth 4

rl-actions-selected 2, 3

rl-epochs 3

rl-learning-rate 0.005, 0.01

86

Bibliography

Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra. Per-

formance, design, and autotuning of batched gemm for gpus. In International

Conference on High Performance Computing, pp. 21–38. Springer, 2016.

Ashish Agarwal. Static automatic batching in tensorflow. In International Conference

on Machine Learning, pp. 92–101. PMLR, 2019.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Learning to com-

pose neural networks for question answering. NAACL, 2016.

Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen, Harm

de Vries, and Aaron Courville. Systematic generalization: what is required and can

it be learned? ICLR, 2019.

Ioana Baldini, Stephen J Fink, and Erik Altman. Predicting gpu performance from

cpu runs using machine learning. In 2014 IEEE 26th International Symposium

on Computer Architecture and High Performance Computing, pp. 254–261. IEEE,

2014.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana

Yakhnenko. Translating embeddings for modeling multi-relational data. Advances

in neural information processing systems, 26, 2013.

Matko Bošnjak. On Differentiable Interpreters. PhD thesis, UCL (University College

London), 2021.

Guillaume Bouchard, Sameer Singh, and Theo Trouillon. On approximate reasoning

capabilities of low-rank vector spaces. In AAAI Spring Symposia. AAAI Press,

2015.

David S Broomhead and David Lowe. Radial basis functions, multi-variable functional

interpolation and adaptive networks. Technical report, Royal Signals and Radar

Establishment Malvern (United Kingdom), 1988.

87

Roberta Calegari, Giovanni Ciatto, Enrico Denti, and Andrea Omicini. Logic-based

technologies for intelligent systems: State of the art and perspectives. Information,

11(3):167, 2020.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hruschka,

and Tom M Mitchell. Toward an architecture for never-ending language learning.

In Twenty-Fourth AAAI conference on artificial intelligence, 2010.

Rich Caruana, Steve Lawrence, and Lee Giles. Overfitting in neural nets: Backprop-

agation, conjugate gradient, and early stopping. Advances in neural information

processing systems, pp. 402–408, 2001.

Stefano Ceri, Georg Gottlob, Letizia Tanca, et al. What you always wanted to know

about datalog (and never dared to ask). IEEE transactions on knowledge and data

engineering, 1(1):146–166, 1989.

Kai-Wei Chang, Wen-tau Yih, Bishan Yang, and Christopher Meek. Typed tensor

decomposition of knowledge bases for relation extraction. In Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.

1568–1579, 2014.

Noam Chomsky. Logical structures in language. American Documentation (pre-1986),

8(4):284, 1957.

Kaleigh Clary, Emma Tosch, John Foley, and David Jensen. Let’s play again: Variabil-

ity of deep reinforcement learning agents in atari environments. NeurIPS Critiquing

and Correcting Trends Workshop, 2018.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. How many random seeds?

statistical power analysis in deep reinforcement learning experiments. arXiv

preprint arXiv:1806.08295, 2018.

Andrew Cropper and Stephen H Muggleton. Learning higher-order logic programs

through abstraction and invention. In IJCAI, pp. 1418–1424, 2016.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar,

Akshay Krishnamurthy, Alex Smola, and Andrew McCallum. Go for a walk and

arrive at the answer: Reasoning over paths in knowledge bases using reinforcement

learning. Proceedings of the 7th International Conference on Learning Representa-

tions, 2018.

88

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. In Proceed-

ings of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long and

Short Papers), pp. 4171–4186, 2019.

Ivan Donadello, Luciano Serafini, and Artur D’Avila Garcez. Logic tensor networks

for semantic image interpretation. In Proceedings of the Twenty-Sixth International

Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, Au-

gust 19-25, 2017, pp. 1596–1602, 2017.

Stavros Efthymiou, Jack Hidary, and Stefan Leichenauer. Tensornetwork for machine

learning. arXiv preprint arXiv:1906.06329, 2019.

Michael Evans and Timothy Swartz. Approximating integrals via Monte Carlo and

deterministic methods, volume 20. OUP Oxford, 2000.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data.

Journal of Artificial Intelligence Research, 61:1–64, 2018.

Ronald Aylmer Fisher. Statistical methods for research workers. In Breakthroughs in

statistics, pp. 66–70. Springer, 1992.

George Fishman. Monte Carlo: concepts, algorithms, and applications. Springer

Science & Business Media, 2013.

Manoel VM França, Gerson Zaverucha, and Artur S d’Avila Garcez. Fast relational

learning using bottom clause propositionalization with artificial neural networks.

Machine learning, 94(1):81–104, 2014.

Hervé Gallaire and Jack Minker. Logic and data bases, symposium on logic and data

bases, centre d’études et de recherches de toulouse, 1977. Advances in Data Base

Theory, 1978.

Artur d’Avila Garcez, Tarek R Besold, Luc De Raedt, Peter Földiak, Pascal Hit-

zler, Thomas Icard, Kai-Uwe Kühnberger, Luis C Lamb, Risto Miikkulainen, and

Daniel L Silver. Neural-symbolic learning and reasoning: contributions and chal-

lenges. In 2015 AAAI Spring Symposium Series, 2015.

Artur S Avila Garcez and Gerson Zaverucha. The connectionist inductive learning

and logic programming system. Applied Intelligence, 11(1):59–77, 1999.

89

Artur S d’Avila Garcez, Dov M Gabbay, and Luis C Lamb. A neural cognitive model

of argumentation with application to legal inference and decision making. Journal

of Applied Logic, 12(2):109–127, 2014.

Artur S d’Avila Garcez, Dov M Gabbay, Oliver Ray, and John Woods. Abductive

reasoning in neural-symbolic systems. Topoi, 26(1):37–49, 2007.

Nicolas Gontier, Koustuv Sinha, Siva Reddy, and Christopher Pal. Measuring sys-

tematic generalization in neural proof generation with transformers. NeurIPS’20,

2020.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint

arXiv:1410.5401, 2014.

Edward Grefenstette. Towards a formal distributional semantics: Simulating logical

calculi with tensors. SEM, 2013.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom.

Learning to transduce with unbounded memory. Advances in neural information

processing systems, 28:1828–1836, 2015.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:

Off-policy maximum entropy deep reinforcement learning with a stochastic actor.

In International conference on machine learning, pp. 1861–1870. PMLR, 2018.

John Hammersley. Monte carlo methods. Springer Science & Business Media, 2013.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and

David Meger. Deep reinforcement learning that matters. In Proceedings of the

AAAI conference on artificial intelligence, volume 32, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-

tation, 9(8):1735–1780, 1997.

Steffen Hölldobler, Yvonne Kalinke, and Hans-Peter Störr. Approximating the se-

mantics of logic programs by recurrent neural networks. Applied Intelligence, 11

(1):45–58, 1999.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei,

C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for com-

positional language and elementary visual reasoning. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 2901–2910, 2017.

90

Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-

augmented recurrent nets. Advances in neural information processing systems, 28:

190–198, 2015.

 Lukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. International Con-

ference on Learning Representations (ICLR), 2016.

Charles Kemp, Joshua B Tenenbaum, Thomas L Griffiths, Takeshi Yamada, and

Naonori Ueda. Learning systems of concepts with an infinite relational model. In

AAAI, volume 3, pp. 5, 2006.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the

compositional skills of sequence-to-sequence recurrent networks. In International

conference on machine learning, pp. 2873–2882. PMLR, 2018.

Adam Lally and Paul Fodor. Natural language processing with prolog in the ibm

watson system. The Association for Logic Programming (ALP) Newsletter, 9, 2011.

Ni Lao, Tom Mitchell, and William Cohen. Random walk inference and learning in

a large scale knowledge base. In Proceedings of the 2011 conference on empirical

methods in natural language processing, pp. 529–539, 2011.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, and

Joseph E Gonzalez. Train large, then compress: Rethinking model size for efficient

training and inference of transformers. In Proceedings of the 37th International

Conference on Machine Learning (ICML 2020), pp. 5958–5968, 2020.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D Forbus, and Ni Lao. Neural

symbolic machines: Learning semantic parsers on freebase with weak supervision.

the Association for Computational Linguistics annual meeting (ACL), 2017.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity

and relation embeddings for knowledge graph completion. In Twenty-ninth AAAI

conference on artificial intelligence, pp. 2181–2187. AAAI Press, 2015.

Prem S Mann. Introductory statistics. John Wiley & Sons, 2007.

Dennis Merritt. Building expert systems in Prolog. Springer Science & Business

Media, 2012.

91

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes,

and Jason Weston. Key-value memory networks for directly reading documents.

Proc. of EMNLP, 2016.

Pasquale Minervini, Matko Bošnjak, Tim Rocktäschel, Sebastian Riedel, and Edward

Grefenstette. Differentiable reasoning on large knowledge bases and natural lan-

guage. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,

pp. 5182–5190, 2020a.

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp, Edward Grefenstette, and

Tim Rocktäschel. Learning reasoning strategies in end-to-end differentiable prov-

ing. In ICML, volume 119 of Proceedings of Machine Learning Research, pp. 6938–

6949. PMLR, 2020b.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human-level control through deep reinforcement learning. nature,

518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-

thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous

methods for deep reinforcement learning. In International conference on machine

learning, pp. 1928–1937. PMLR, 2016.

Stephen Muggleton. Inductive logic programming. New generation computing, 8(4):

295–318, 1991.

Stephen Muggleton. Inverse entailment and progol. New generation computing, 13

(3):245–286, 1995.

Stephen H Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad. Meta-

interpretive learning of higher-order dyadic datalog: Predicate invention revisited.

Machine Learning, 100(1):49–73, 2015.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the

gap between value and policy based reinforcement learning. In Advances in Neural

Information Processing Systems (NIPS), pp. 2772–2782, 2017.

Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, and Jude Shav-

lik. Gradient-based boosting for statistical relational learning: The relational de-

pendency network case. Machine Learning, 86(1):25–56, 2012.

92

Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-

regularized markov decision processes. arXiv preprint arXiv:1705.07798, 2017.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. Factorizing yago: scalable

machine learning for linked data. In Proceedings of the 21st international conference

on World Wide Web, pp. 271–280, 2012.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic embeddings of

knowledge graphs. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 30, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Py-

torch: An imperative style, high-performance deep learning library. Advances in

neural information processing systems, 32:8026–8037, 2019.

J. Ross Quinlan. Learning logical definitions from relations. Machine Learning, 5:

239–266, 1990. doi: 10.1007/BF00117105.

Rajat Raina, Anand Madhavan, and Andrew Y Ng. Large-scale deep unsupervised

learning using graphics processors. In Proceedings of the 26th annual international

conference on machine learning, pp. 873–880, 2009.

Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M Marlin. Relation

extraction with matrix factorization and universal schemas. In Proceedings of the

2013 Conference of the North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies, pp. 74–84, 2013.

Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. In NIPS,

pp. 3788—-3800, 2017.

Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang.

Drum: End-to-end differentiable rule mining on knowledge graphs. Proc. of NIPS,

2019.

Shaeke Salman and Xiuwen Liu. Overfitting mechanism and avoidance in deep neural

networks. arXiv preprint arXiv:1901.06566, 2019.

Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. Explainable artificial

intelligence: Understanding, visualizing and interpreting deep learning models. In

ITU J., volume 1 of ICT Discoveries, pp. 39–48, 2018.

93

Claude Sammut and Ranan B Banerji. Learning concepts by asking questions. Ma-

chine learning: An artificial intelligence approach, 2:167–192, 1986.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy

Lillicrap. Meta-learning with memory-augmented neural networks. In International

conference on machine learning, pp. 1842–1850. PMLR, 2016.

Daniel Schlegel. Deep machine learning on gpu. University of Heidelber-Ziti, 12, 2015.

Dietmar Seipel, Falco Nogatz, and Salvador Abreu. Domain-specific languages in pro-

log for declarative expert knowledge in rules and ontologies. Computer Languages,

Systems & Structures, 51:102–117, 2018.

Luciano Serafini and Artur d’Avila Garcez. Logic tensor networks: Deep learning and

logical reasoning from data and knowledge. In Proceedings of the 11th International

Workshop on Neural-Symbolic Learning and Reasoning (NeSy’16) co-located with

the Joint Multi-Conference on Human-Level Artificial Intelligence (HLAI 2016),

New York City, NY, USA, July 16-17, 2016., 2016.

Lokendra Shastri. Neurally motivated constraints on the working memory capacity of

a production system for parallel processing: Implications of. In Proceedings of the

Fourteenth Annual Conference of the Cognitive Science Society: July 29 to August

1, 1992, Cognitive Science Program, Indiana University, Bloomington, volume 14,

pp. 159. Psychology Press, 1992.

Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, and Jianfeng Gao. M-walk:

Learning to walk over graphs using monte carlo tree search. Advances in Neural

Information Processing Systems, 2018.

Jiong Si, Sarah L Harris, and Evangelos Yfantis. A dynamic relu on neural network. In

2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS), pp. 1–6. IEEE,

2018.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamil-

ton. Clutrr: A diagnostic benchmark for inductive reasoning from text. Empirical

Methods of Natural Language Processing (EMNLP), 2019.

Paul Smolensky. On the proper treatment of connectionism. Behavioral and brain

sciences, 11(1):1–23, 1988.

Raymond M Smullyan. First-order logic. Dover Publications, Inc., New York, 1995.

94

Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning

with neural tensor networks for knowledge base completion. In Advances in neural

information processing systems, pp. 926–934. Citeseer, 2013.

Ashwin Srinivasan. The aleph manual, 2001.

Bernd Steinbach and Roman Kohut. Neural networks: a model of boolean functions.

In Proceedings of the 5th International Workshop on Boolean Problems, pp. 223–

240, 2002.

Dave Steinkraus, Ian Buck, and PY Simard. Using gpus for machine learning algo-

rithms. In Eighth International Conference on Document Analysis and Recognition

(ICDAR’05), pp. 1115–1120. IEEE, 2005.

Mark E Stickel. A prolog technology theorem prover: Implementation by an extended

prolog compiler. Journal of Automated reasoning, 4(4):353–380, 1988.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end

memory networks. In Advances in Neural Information Processing Systems, vol-

ume 28, pp. 2440–2448. Curran Associates Inc., 2015.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury,

and Michael Gamon. Representing text for joint embedding of text and knowl-

edge bases. In Proceedings of the 2015 conference on empirical methods in natural

language processing, pp. 1499–1509, 2015.

Geoffrey G Towell and Jude W Shavlik. Knowledge-based artificial neural networks.

Artificial intelligence, 70(1-2):119–165, 1994.

Geofrey G Towell, Jude W Shavlik, Michiel O Noordewier, et al. Refinement of

approximate domain theories by knowledge-based neural networks. In Proceedings

of the eighth National conference on Artificial intelligence, volume 861866. Boston:

AAAI Press, 1990.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume

Bouchard. Complex embeddings for simple link prediction. In International Con-

ference on Machine Learning, pp. 2071–2080. PMLR, 2016.

95

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding:

A survey of approaches and applications. IEEE Transactions on Knowledge and

Data Engineering, 29(12):2724–2743, 2017.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph and

text jointly embedding. In Proceedings of the 2014 conference on empirical methods

in natural language processing (EMNLP), pp. 1591–1601, 2014.

Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul Gupta, and

Dekang Lin. Knowledge base completion via search-based question answering. In

Proceedings of the 23rd international conference on World wide web, pp. 515–526,

2014.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine learning, 8(3):229–256, 1992.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Victor Sanh, Clement Delangue,

Anthony Moi, Pierric Cistac, Morgan Funtowicz, Joe Davison, Sam Shleifer, et al.

Transformers: State-of-the-art natural language processing. In Proceedings of the

2020 Conference on Empirical Methods in Natural Language Processing: System

Demonstrations, pp. 38–45, 2020.

Wenhan Xiong, Thien Hoang, and William Yang Wang. Deeppath: A reinforcement

learning method for knowledge graph reasoning. Conference on Empirical Methods

in Natural Language Processing (EMNLP), 2017.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding

entities and relations for learning and inference in knowledge bases. International

Conference on Learning Representations, 2015.

Fan Yang, Zhilin Yang, and William W Cohen. Differentiable learning of logical rules

for knowledge base reasoning. Advances in Neural Information Processing Systems

30, pp. 2316–2325, 2017.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. Quaternion knowledge graph embeddings.

Proc. NeurIPS, pp. 2731–2741, 2019.

96

	Introduction
	Knowledge Bases and Reasoning
	Neuro-symbolic Reasoning
	Objectives
	Thesis Structure

	Background
	Prolog
	Datasets
	Datasets from Related Work
	CLUTRR
	Specific CLUTRR Instances

	Backward Chaining Algorithm
	Neural Theorem Provers
	Unification
	Expansion
	Inductive Logic Programming
	Learning

	Conditional Theorem Provers
	Issues with NTPs
	Conditional Rule Selection
	Selection Module
	Reformulator Architectures
	Summary

	Related Work
	Systematic Generalization
	Knowledge Graph Embedding
	Inductive Logic Programming
	Neuro-symbolic Models

	Explanation of the Problem
	Number of Reformulators Needed
	Expressivity of CTPs
	Experimental Results

	Reasoning Depth
	Required Reasoning Depths
	Example
	Experimental Results

	Computational Issues
	Time Complexity Analysis
	Wall-Clock Time
	Outline of Solution

	Method
	Optimising Proof Paths
	Motivation for the Existence of a Solution
	Choosing Reformulators
	Wall-Clock Time Speedup

	REINFORCE
	Reinforcement Learning
	Policy Gradient Descent
	Implementation
	Issues Encountered with the Architecture

	Experiment Design
	Model Hyperparameters
	Training Procedure
	Outperforming the Baseline

	Initial Attempts
	Recursive Method
	Core Implementation Issue with the Architecture
	Naive Solution

	Iterative Method
	Mismatching Batch Sizes
	Outline of Solution
	Speed

	Reformulator Subsets
	Relative Strengths of Reformulator Subsets
	Average Reformulator Strength
	Maximizing Subset Performance

	First Batch Element Approximation
	Outline of Solution
	Speedup
	Results

	Tensor Operations Solution
	Technicalities of Solution
	Points of Integration
	Selection Module
	Tensor Masking
	Collecting Rewards

	Model Optimization
	Results
	Speedup
	Comparison to Baseline
	Statistical Significance

	Further Improvements
	Negative Examples
	Variables
	Entropy Regularization
	REINFORCE with Baseline
	Training Modules in Parallel
	Conditioning Upon More

	Conclusion
	Model Hyperparameters
	Fixed CTP Hyperparameters
	Number of Reformulators
	Reasoning Depth
	First Batch Element Approximation
	Reformulators Subsets
	RL with Tensor Operations
	5 Reformulators
	8 Reformulators

	Bibliography

